scholarly journals Comparative analysis of aluminium surface roughness in end-milling under dry and minimum quantity lubrication (MQL) conditions

2015 ◽  
Vol 2 ◽  
pp. 30 ◽  
Author(s):  
Ugochukwu C. Okonkwo ◽  
Imhade P. Okokpujie ◽  
Jude E. Sinebe ◽  
Chinedu A.K. Ezugwu
Author(s):  
Dae Hoon Kim ◽  
Pil-Ho Lee ◽  
Jung Sub Kim ◽  
Hyungpil Moon ◽  
Sang Won Lee

This paper investigates the characteristics of micro end-milling process of titanium alloy (Ti-6AL-4V) using nanofluid minimum quantity lubrication (MQL). A series of micro end-milling experiments are conducted in the meso-scale machine tool system, and milling forces, burr formations, surface roughness, and tool wear are observed and analyzed according to varying feed per tooth and lubrication conditions. The experimental results show that MQL and nanofluid MQL with nanodiamond particles can be effective to reduce milling forces, burrs and surface roughness during micro end-milling of titanium alloy. In particular, it is demonstrated that smaller size of nanodiamond particles — 35 nm — can be more effective to decrease burrs and surface roughness in the case of nanofluid MQL micro end-milling.


Author(s):  
S. Vignesh ◽  
U. Mohammed Iqbal

This paper is concentrated on the exploration of carbonaceous nanocutting fluids with the concept of tri-hybridization with improved lubricative and cooling properties by using multi-walled carbon nanotubes, hexagonal boron nitride , and graphene nanoparticles with neat cold-pressed coconut oil in a fixed volumetric proportion. The rheological properties of the nanofluids were studied to assess their performance in real-time end milling operations using an AA7075 work piece on a CNC lathe machine under a minimum quantity lubrication environment. At the outset, the carbonaceous nanofluids gave good performance when compared to conventional cutting fluids. Furthermore, the surfaces of the tribo-pairs and the chips formed were analyzed using a profilometer and high-end microscopes. The results obtained from the experiments confirm that the tri-hybridized carbonaceous nanolubricant has reduced the cutting force, tool wear, and surface roughness when correlated to monotype nanofluids. The scanning electron microscope images of the surface and tool were studied and it was found that the surface quality was maintained while end milling with tri-hybridized carbonaceous nanofluid. Improvement of ∼17%, 20% and 25% in cutting forces, surface roughness and tool wear was found in tri-hybrid fluid when compared to other fluids. Thus, the present work indicates that the addition of carbon-based nanoparticles with coconut oil has offered better performance and is found to be a credible alternative to existing conventional cutting fluids.


Author(s):  
S Vignesh ◽  
U Mohammed Iqbal

The current paper is concentrated on the mechanical and machining process exploration of metallic nano-lubricant with the concept of tri-hybridization with improved lubricative and cooling properties by using TiO2, ZnO and Fe2O3 metallic nano particles with neat cold-pressed coconut oil in a fixed volumetric proportion (10:90). End milling of gummy material like aluminium requires a solution to the conventional dry and wet machining due to high productivity requirement and to obtain good surface quality. So, the prepared nanofluids were tested for their rheological behavior and latter introduced into milling of AA7075 as a solution to the above stated problem. Overall, the nanofluids gave good performance when compared to conventional methods. Furthermore, the results obtained from the experiments confirm that the trio-hybridized lubricant has reduced the cutting force, tool wear and surface roughness in an improved way when related to monotype nano fluids. The response surface methodology is performed to evaluate the interaction of process parameters in minimum quantity lubrication environment with nano fluids. The results show that the cutting forces, surface roughness, tool wear was minimized while machining with hybrid cutting fluids and well within the desirability.


Sign in / Sign up

Export Citation Format

Share Document