Investigation of temperature actions on flat steel box girders of long-span bridges with temperature monitoring data

2018 ◽  
Vol 21 (14) ◽  
pp. 2099-2113 ◽  
Author(s):  
Yang Deng ◽  
Aiqun Li ◽  
Yang Liu ◽  
Suren Chen

The worldwide application of streamlined flat steel box girder on long-span bridges calls for more knowledge of its temperature distribution. The rapid development of structural health monitoring techniques offers a great opportunity to address this issue. A comprehensive approach of installing monitoring equipment, collecting data, and applying long-term temperature monitoring data to study the temperature distribution of flat steel box girders is developed. As demonstrated through the analysis of 1-year data of a suspension bridge, first, a mapping relation between effective temperature and ambient air temperature is established. Such a relation enables identifying the optimal time to finally join the flat steel box girders at the designed effective temperature based on the easy-to-obtain ambient air temperature. Second, the cycling variation of effective temperature is presented to provide information for design and assessment of expansion joints and bearings, including not only the maximum design displacements but also cumulative displacements related to the long-term durability and remaining life of expansion joints and bearings. Finally, both vertical and transverse temperature gradients are studied to provide some new insights about the temperature characteristics of flat steel box girders. The study suggests that the transverse and vertical temperature gradients should be applied to the bridge cross section individually since the data analysis supports that the two gradients are independent.

2012 ◽  
Vol 204-208 ◽  
pp. 2236-2239 ◽  
Author(s):  
Bo Chen ◽  
Wei Hua Guo ◽  
Chun Fang Song ◽  
Kai Kai Lu

Bridge tower, time-varying temperature field, heat transfer analysis, finite element model. Abstract. Long span suspension bridges are subjected to daily, seasonal and yearly environmental thermal effects induced by solar radiation and ambient air temperature. This paper aims to investigate the temperature distribution of a tower of a long span suspension bridge. Two-dimensional heat transfer models are utilized to determine the time-dependent temperature distribution of the bridge tower of the bridge. The solar radiation model is utilized to examine the time-varying temperature distribution. Finite element models are constructed for the bridge tower to compute the temperature distribution. The numerical models can successfully predict the structural temperature field at different time. The methodology employed in the paper can be applied to other long-span bridges as well.


2012 ◽  
Vol 18 (5) ◽  
pp. 1643-1650
Author(s):  
Pascal Savioz ◽  
Thomas Spuler ◽  
Colm O'Suilleabhain

2015 ◽  
Vol 145 ◽  
pp. 196-208 ◽  
Author(s):  
Yongxin Yang ◽  
Rui Zhou ◽  
Yaojun Ge ◽  
Damith Mohotti ◽  
Priyan Mendis

2018 ◽  
Vol 23 (7) ◽  
pp. 04018038 ◽  
Author(s):  
Tong Guo ◽  
Lingyu Huang ◽  
Jie Liu ◽  
Yi Zou

2020 ◽  
Vol 10 (21) ◽  
pp. 7754
Author(s):  
Fiseha Nega Birhane ◽  
Sung-Il Kim ◽  
Seung Yup Jang

Long-span prestressed concrete (PSC) bridges often suffer excessive deflection during their service lives. The nonuniform shrinkage strains of concrete caused by uneven moisture distributions can induce significant additional deflections, when combined with the creep and cracking of the concrete. Current design practices usually overlook these factors, and the few proposed approaches to consider them are complex and computationally expensive. This study proposes a simplified approach for considering the effect of nonuniform shrinkage by using the equivalent load concept in combination with a nonlinear analysis of the creep and cracking using three-dimensional finite element models. The long-term deflections of short-, medium-, and long-span PSC bridges are calculated under the combined effects of creep, shrinkage, and cracking. The results show that the nonuniform shrinkage effect is significant in medium- to long-span bridges, and that the cracking of the concrete reduces the stiffness, thereby increasing the long-term deflection of the bridges (more severely so in combination with creep and shrinkage). The predicted long-term deflections reasonably agree with the measured data. Thus, the equivalent load approach is effective for calculating long-term deflections considering nonuniform shrinkage strains, without the complicated and expensive coupling of moisture transport and structural analyses.


Sign in / Sign up

Export Citation Format

Share Document