aerodynamic instability
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 20)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
pp. 1-24
Author(s):  
Zeyuan Yang ◽  
Yadong Wu ◽  
Hua Ouyang

Abstract Rotating instability (RI) and rotating stall (RS) are two types of aerodynamic instability in axial compressors. The former features the side-by-side peaks below the blade passing frequency (BPF) in frequency spectra, and the latter represents one or more stall cells rotating in the compressor. This paper presents an experimental on the nearfield pressure and farfield acoustic characteristics of RI phenomenon in a low-speed axial compressor rotor, which endures both RI and RS at several working conditions. In order to obtain the high-order modes of RI and other aerodynamic instability, a total of 9 or 20 Kulites are circumferentially mounted on the casing wall to measure the nearfield pressure fluctuation using a mode order calibration method. Meantime in the farfield 16 microphones are planted to measure the acoustic mode order using the compressive sensing method. Through calibration the experiments acquire the mode orders generated by RI and the interaction between RI and BPF, which is higher than the number of transducers. As for RS, the mode decomposition shows a mode order of 1, indicating one single stall cell rotating in the compressor. This experiment also shows that amplitude of RI modes is decreased when RS occurs, but RS modes and RI modes will both be enhanced if the flow rate is further reduced. This experiment reveals that RI experiences three stages of “strengthen-weaken-strengthen”, and hence RI may not be regarded only as “prestall” disturbance.


2021 ◽  
Vol 189 ◽  
pp. 310-320
Author(s):  
Vladimir S. Aslanov ◽  
Dmitry A. Sizov

Author(s):  
Yang Liu ◽  
Jichao Li ◽  
Juan Du ◽  
Hongwu Zhang ◽  
Chaoqun Nie

Abstract As a reliable stall warning strategy, the fast wavelet method was introduced to successfully predict the aerodynamic instability of a multi-stage axial flow compressor. One single sensor installed at each stage is proved to be sufficient to predict the stability status in a three-stage axial flow compressor. The whole prediction strategy includes the dynamic pressure signal capture, disturbance extraction using decomposition and reconstruction via fast wavelet transform, and stall warning index calculation based on statistical probability distribution. On this premise, the first occurrence of the stall in this three-stage axial flow compressor is predicted to be within the first stage, which is consistent with the stall route captured by the eight transducers around the casing wall. Thereafter, the stall warning index is used to monitor the stability status during the continuous throttling process. Furthermore, the validation using tip air injection and inlet radial distortion indicated that the stall warning index decreases as the compressor's stability improves. Conversely, the deterioration of stability causes the increase of the stall warning index. Thus, experimental results demonstrate that the stall warning method based on fast wavelet analysis can predict the aerodynamic instability in actual application.


Author(s):  
Alexander Belostotsky ◽  
Irina Afanasyeva ◽  
Irina Negrozova ◽  
Oleg Goryachevsky

In this paper, we study aerodynamic instability using the example of a two-dimensional problem of flow around a simplified section of a flexible suspension bridge (on the Tacoma River, USA). A direct dynamic coupled calculation was performed to determine the critical speed of manifestation of aerodynamic instability. The results obtained were compared with the results of engineering estimates presented in [40]. This example shows that to solve such problems it is possible to use the lighter des turbulence model instead of the les turbulence model and, therefore, a coarser mesh. In contrast to existing engineering techniques, direct numerical modeling of the interaction between the structure and the air flow allows one to take into account the reverse effect of the structure on the flow, as well as the mutual influence of several types ofaerodynamic instability.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Baofeng Tu ◽  
Xinyu Zhang ◽  
Jun Hu ◽  
Ming Zhong ◽  
Bing Xiong

In order to detect the aerodynamic instability of a multistage axial compressor more accurately and earlier, the harmonic Fourier mean amplitude analysis method and heterotopic variance analysis method are developed. The dynamic instability prediction performance of the two methods is studied on a low-speed and a high-speed two-stage axial compressor. The harmonic Fourier mean amplitude analysis method is suitable for predicting the aerodynamic instability of a multistage axial compressor in the form of a rotating stall. Compared with the traditional harmonic Fourier analysis methods, the harmonic Fourier mean amplitude analysis method can capture the detail of the pressure signal more accurately and it can effectively prevent instability misjudgment. The heterotopic variance analysis method is developed based on the conventional variance analysis method, and it can be used to distinguish whether the compressor is in the rotating stall or the surge state. The heterotopic variance analysis method can predict the aerodynamic instability ahead of the harmonic Fourier mean amplitude analysis method, and fewer circumferential measuring points were employed. The layout of the measuring points also influences the detection of the aerodynamic instability of the compressor. The aerodynamic instability of the high-speed axial compressor can be predicted earlier by employing measuring points at the compressor outlet.


Author(s):  
Adel Benidir ◽  
Olivier Flamand ◽  
Grigorios Dimitriadis ◽  
Philippe Delpech

2021 ◽  
Author(s):  
Zeyuan Yang ◽  
Yadong Wu ◽  
Hua Ouyang

Abstract Rotating instability (RI) and rotating stall (RS) are two types of aerodynamic instability in axial compressors. The former features the side-by-side peaks below the blade passing frequency (BPF) in frequency spectra, and the latter represents one or more stall cells rotating in the compressor. This paper presents an experimental on the nearfield pressure and farfield acoustic characteristics of RI phenomenon in a low-speed axial compressor rotor, which endures both RI and RS at several working conditions. In order to obtain the high-order modes of RI and other aerodynamic instability, a total of 9 or 20 Kulites are circumferentially mounted on the casing wall to measure the nearfield pressure fluctuation using a mode order calibration method. Meantime in the farfield 16 microphones are planted to measure the acoustic mode order using the compressive sensing method. Through calibration the experiments acquire the mode orders generated by RI and the interaction between RI and BPF, which is higher than the number of transducers. As for RS, the mode decomposition shows a mode order of 1, indicating one single stall cell rotating in the compressor. This experiment also shows that amplitude of RI modes is decreased when RS occurs, but RS modes and RI modes will both be enhanced if the flow rate is further reduced. This experiment reveals that RI experiences three stages of “strengthen-weaken-strengthen”, and hence RI may not be regarded only as “prestall” disturbance.


Author(s):  
Zhouquan Deng ◽  
Haojun Tang ◽  
Bo Hu ◽  
Yongle Li

2021 ◽  
Author(s):  
Mathieu Lapotre ◽  
Ryan Ewing ◽  
Michael Lamb

<p>Unlike terrestrial sandy deserts, Mars hosts two scales of ripples in fine sand. Larger, meter-scale ripples are morphologically distinct from small, decimeter-scale ripples, and their size, in particular, decreases with increasing atmospheric density. As a result, it was recently proposed that the equilibrium size of the larger ripples is set by an aerodynamic process, which makes them larger under thinner atmospheres. Under this hypothesis, large martian ripples would be distinct from smaller, decimeter-scale impact ripples in a mechanistic sense. Several workers have followed up on these initial observations to either corroborate, counter, or expand upon that hypothesis. Notably, a mechanistic model that not only corroborates the hypothesis that the size of large martian ripples is set by an aerodynamic process but also suggests that they arise from an aerodynamic instability, distinct from the grain-impact instability thought to be responsible for the formation of impact ripples, was developed. Conversely, other workers proposed that large ripples can develop from small impact ripples in a numerical model due to Mars’ low atmospheric pressure. In the latter model, the ripples’ growth-limiting mechanism is consistent with an aerodynamic process, but the large ripples would not be a separate class of ripples – they would simply be a larger version of the small impact ripples. Here, we explore this debate by synthesizing recent advances in large-ripple formation and offer potential avenues to address outstanding questions. Although significant knowledge gaps remain, it is clear that large martian ripples are larger where the atmosphere is less dense. The size of large martian ripples thus remain a powerful paleoclimate indicator.</p>


Sign in / Sign up

Export Citation Format

Share Document