An experimental study on piezoelectric energy harvesting from wind and ambient structural vibrations for wireless structural health monitoring

2019 ◽  
Vol 23 (5) ◽  
pp. 1010-1023 ◽  
Author(s):  
Naveet Kaur ◽  
Dasari Mahesh ◽  
Sreenitya Singamsetty

Energy harvesting is an emerging technology holding promise of sustainability amid the alarming rate at which the human community is depleting the natural resources to cater its needs. There are several ways of harvesting energy in a renewable fashion such as through solar, wind, hydro-electric, geothermal, and artificial photosynthesis. This study focuses on energy harvesting from wind vibrations and ambient structural vibrations (such as from rail and road bridges) through piezo transducers using the direct piezoelectric effect. First, the potential of the piezoelectric energy harvesting from ambient wind vibrations has been investigated and presented here. Lead zirconate titanate patches have been attached at the fixed end of aluminum rectangular and trapezoidal cantilevers, which have been exposed to varying wind velocity in a lab-size wind tunnel. The effect of perforations and twisting (distortion) on the power generated by the patches under varying wind velocity has also been studied. It has been observed that the power is comparatively higher in rectangular-shaped cantilever than the trapezoidal one. Perforations and shape distortion showed promising result in terms of higher yield. The laboratory experiments have also been extended to the real-life field condition to measure the actual power generated by the lead zirconate titanate patches under the ambient wind vibrations. Next, energy harvesting from the ambient structural vibrations has been done both experimentally and numerically. Four different prototypes have been considered. The power has been measured across the lead zirconate titanate patches individually and in parallel combination. A maximum power output for Prototype 1 to Prototype 4 has been found to be 4.3428, 11.844, 25.97, and 43.12 µW, respectively. Numerical study has also been carried out in ANSYS 14.5 to perform the parametric study to examine the effect of addition of mass at the free end of cantilever. In a nutshell, this article provides a comprehensive study on the effect of various factors on the amount of energy generated by piezoelectric patches under wind and structural vibrations. The energy generated is sufficient for driving low-power-consuming electronics that can further be used for other applications like wireless structural health monitoring, and so on.

2009 ◽  
Vol 413-414 ◽  
pp. 439-446 ◽  
Author(s):  
C.A. Featherston ◽  
Karen M. Holford ◽  
Bea Greaves

The concept of harvesting energy is not a new one: there has been an interest in this area for around 10 years. Devices typically use either vibration (rigid body motion) or thermal gradients and can harvest sufficient energy to power telemetry, small devices or to charge a battery or capacitance device. However, for the new generation of aircraft, (both fixed wing and rotating) there is now an urgent need to develop energy harvesting systems in order to provide localised power for sensors in structural health monitoring systems (SHM). By implementing SHM, aircraft manufacturers can benefit from improved safety, reduced maintenance and extended aircraft life. The work presented examines the feasibility of designing an energy harvesting system powered by the vibrations of aircraft panels generated in flight. PZT (lead zirconate titanate) harvesters are bonded to an aluminium alloy panel, representative of an aircraft wing panel which is vibrated across a range of amplitudes (up to + 0.2mm) and frequencies (up to 300Hz). By recording voltage and current outputs from each harvester, generated power is calculated which when normalised for area and mass indicates values of up to 7.0 Wm-2 and 2.5Wkg-1 respectively, representing mechanical to electrical energy conversion efficiencies of up to 35% dependant on frequency of vibration. From these values it is estimated that a harvester area of down to 71cm2 or mass of as little as 20g is necessary to meet the current minimum power requirements of SHM systems of 50mW. With predicted reductions in sensor power consumption indicating system power requirements in the order of 0.1-1mW, this work shows that piezoelectric energy harvesting has future potential for powering aerospace SHM systems.


2020 ◽  
Vol 31 (16) ◽  
pp. 1898-1909
Author(s):  
Qijian Liu ◽  
Yuan Chai ◽  
Xinlin Qing

A variety of structural health monitoring techniques have been developed to support the efficient online monitoring of structural integrity. Moreover, Lamb wave and electromechanical impedance methods are increasingly used for structural health monitoring applications due to their high sensitivity and effectiveness in detecting damage. However, these techniques require transducers to be permanently attached to structures because of the usage of baselines recorded under the condition without damage. In this study, a reusable piezoelectric lead zirconate titanate transducer for monitoring corrosion damage on the aluminum plate is introduced, which can be removed from the test specimen and reused with the repeatability of signals. The reusable piezoelectric lead zirconate titanate transducer is bonded on the aluminum plate using the ethylene-acrylic acid copolymer with an aluminum enclosure. A series of experiments are conducted on an aluminum plate, including the investigation for repeatability of signals and the capability of corrosion detection of the designed piezoelectric lead zirconate titanate transducer through the Lamb wave and electromechanical impedance methods. The simulated corrosion defect with the area of 15 × 15 mm2 is detected during experiments. The experimental results confirm that the reusable piezoelectric lead zirconate titanate transducer can effectively evaluate the corrosion damage to plate structure and can be reused many times.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2171
Author(s):  
Hyeonsu Han ◽  
Junghyuk Ko

Along with the increase in renewable energy, research on energy harvesting combined with piezoelectric energy is being conducted. However, it is difficult to predict the power generation of combined harvesting because there is no data on the power generation by a single piezoelectric material. Before predicting the corresponding power generation and efficiency, it is necessary to quantify the power generation by a single piezoelectric material alone. In this study, the generated power is measured based on three parameters (size of the piezoelectric ceramic, depth of compression, and speed of compression) that contribute to the deformation of a single PZT (Lead zirconate titanate)-based piezoelectric element. The generated power was analyzed by comparing with the corresponding parameters. The analysis results are as follows: (i) considering the difference between the size of the piezoelectric ceramic and the generated power, 20 mm was the most efficient piezoelectric ceramic size, (ii) considering the case of piezoelectric ceramics sized 14 mm, the generated power continued to increase with the increase in the compression depth of the piezoelectric ceramic, and (iii) For piezoelectric ceramics of all diameters, the longer the depth of deformation, the shorter the frequency, and depending on the depth of deformation, there is a specific frequency at which the charging power is maximum. Based on the findings of this study, PZT-based elements can be applied to cases that receive indirect force, including vibration energy and wave energy. In addition, the power generation of a PZT-based element can be predicted, and efficient conditions can be set for maximum power generation.


2014 ◽  
Vol 976 ◽  
pp. 159-163 ◽  
Author(s):  
Roberto Ambrosio ◽  
Hector Gonzalez ◽  
Mario Moreno ◽  
Alfonso Torres ◽  
Rafael Martinez ◽  
...  

In this work is presented a study of a piezoelectric energy harvesting device used for low power consumption applications operating at relative low frequency. The structure consists of a cantilever beam made by Lead Zirconate Titanate (PZT) layer with two gold electrodes for electrical contacts. The piezoelectric material was selected taking into account its high coupling coefficients. Different structures were analyzed with variations in its dimensions and shape of the cantilever. The devices were designed to operate at the resonance frequency to get maximum electrical power output. The structures were simulated using finite element (FE) software. The analysis of the harvesting devices was performed in order to investigate the influence of the geometric parameters on the output power and the natural frequency. To validate the simulation results, an experiment with a PZT cantilever with brass substrate was carried out. The experimental data was found to be very close to simulation data. The results indicate that large structures, in the order of millimeters, are the ideal for piezoelectric energy harvesting devices providing a maximum output power in the range of mW


Sign in / Sign up

Export Citation Format

Share Document