Development of dynamic base model of a bogie suspended forwarder

Author(s):  
Abbos Ismoilov ◽  
Ulf Sellgren ◽  
Kjell Andersson

A forwarder is an off-road working machine that is used to transport logs from logging sites to a landing area that is accessible by trucks. Soil damage and operator comfort, especially whole-body vibrations when operating on hard and rough terrain, are crucial issues when developing novel forest machines. Most forwarders on the market are heavy machines with articulated steering and they are equipped with pairs of wheels mounted on bogies. For such bogie machines, only the flexibility and the dynamic dissipation in the tyres contribute to the “chassis damping”. The roll and lateral motions are the most severe components of the whole-body vibrations. So, developing new traction units, chassis suspensions and/or cabin suspension are in focus. Model-based design relies on focused models that are as simple as possible, but not too simple. This paper presents a 12 degrees-of-freedom multi-body dynamics simulation model of a standard eight-wheeled bogie type of medium-sized forwarder. The presented model is targeted for assessing and comparing different design solutions. It is shown that a configuration of seven rigid subsystems and eight flexible tyres represented with the simple and computer efficient Fiala tyre model enables the forwarder dynamic simulation model to be used to predict the roll and lateral motions of a forwarder operating on hard and rough terrain.

2011 ◽  
Vol 308-310 ◽  
pp. 1946-1950 ◽  
Author(s):  
Fang Tang ◽  
Yan Ding Wei ◽  
Xiao Jun Zhou ◽  
Zhu Hui Luo ◽  
Ming Xiang Xie ◽  
...  

In order to fulfill the requirement of vehicle dynamics performance and real-time capability in driving simulator, modeling and simulation method of a four-wheeled vehicle model based on multi body dynamics software Vortex was studied. Fundamental construction and dynamics properties of the model such as body, chassis, wheels, power train, suspension and tyre model were described. The model was tested to simulate on the C grade of road. The results indicate that the model and simulation method can well represent vehicle dynamics performance and high real-time capability of simulation, and is worthy to apply to driving simulator in the future.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774710 ◽  
Author(s):  
Yue Zhu ◽  
Jiangming Kan ◽  
Wenbin Li ◽  
Feng Kang

One of the challenging problems in the forest industry is to develop a chassis that is well-adapted to the complex terrain conditions in the forest. In this article, a novel forestry chassis with an articulated body with 3 degrees of freedom and installed luffing wheel-legs (FC-3DOF&LW) is proposed, and the mechanical model of the luffing wheel-leg is built. Based on the mechanical model, the hydraulic cylinder velocity that involves the wheel-leg luffing is calculated. The process of surmounting the obstacle is presented by multi-body dynamics simulation. To demonstrate the improvement of ride comfort, the other simulation of the chassis with an articulated body with 3 degrees of freedom (FC-3DOF) is contrasted in multi-dynamics software. The final result shows that curves of barycenter displacement for FC-3DOF&LW with the front and rear frames are well matched when the front frame surmounts the obstacle; in particular, the barycenter displacement is almost stable when the rear frame surmounts the obstacle. The maximum rotated angle of the articulated joint reaches almost 37° without the luffing wheel-leg, whereas it is only 4° with FC-3DOF&LW, a decrease of 89.1%. Moreover, the acceleration trend for FC-3DOF&LW is more stable than that for FC-3DOF.


2012 ◽  
Vol 472-475 ◽  
pp. 1971-1976 ◽  
Author(s):  
Wei Dong Huang ◽  
Hong Kui Feng ◽  
Jin Song Bao ◽  
You Sheng Xu

Motor drive control is the major study field in the development of lunar rover. Based on the double-closed DC loop adjustable-speed system, a motor drive simulation module using a position recursive PID control algorithm is developed, which is integrated into the multi-body dynamics simulation system, to carry out the whole lunar rover simulation. And the cruise process of lunar rover locomotion in the complex lunar terrain is simulated in a virtual environment.


2015 ◽  
Vol 743 ◽  
pp. 99-106 ◽  
Author(s):  
Kyung Min Kang ◽  
Peng Mou ◽  
D. Xiang ◽  
Gang Shen

Misalignment on sun gear in planetary gear is easily occurred and it usually causes serious problem of work efficiency and lifetime with the change of planet load sharing. For study on the influence of sun gear misalignment on load sharing, multibody dynamics simulation is employed in this paper. First of all, 3D geometry model of planetary gear is built by Solidworks. Based on 3D model, multi-body dynamics model of planetary gear is built by MSC.ADAMS and calculate meshing forces between sun gear and planet gears with each type of sun gear misalignment which are angular, radial and axial type. Based on this meshing force result, load sharing factor is calculated and the results of influence of each misalignment type to load sharing factor is obtained. Finally, gear lifetime is estimated by AGMA gear fatigue strength estimation method with load sharing factor. According to the results, radial misalignment is the most influence to load sharing factor and gear lifetime.


Sign in / Sign up

Export Citation Format

Share Document