An improved compliant contact force model using a piecewise function for impact analysis in multibody dynamics

Author(s):  
Jie Yu ◽  
Jinkui Chu ◽  
Yang Li ◽  
Le Guan

Contact-impact problems have attracted more and more attention in mechanical multibody systems. In the past period of time, a few compliant contact force models have been put forward. However, some compliant contact force models are only applicable to a specific range of coefficient of restitution impact problems. And, some compliant contact force models have large errors with the actual situation. In order to reduce the errors, an improved compliant contact force model is proposed in this paper, which is applicable to the whole range of coefficient of restitution impact problems. In this work, the permanent deformation is taken into account during the contact process. Meanwhile, the method of piecewise fitting is used to reduce the errors in numerical solutions. Therefore, the improved compliant contact force model uses a piecewise function for the whole range of coefficient of restitution. In order to illustrate the situation, six independent contact force models are numerically analyzed by using Matlab codes. The result shows that the improved compliant contact force model in this paper is applicable to both soft and hard impact and nearer to the actual situation.

2012 ◽  
Vol 79 (6) ◽  
Author(s):  
Mohamed Gharib ◽  
Yildirim Hurmuzlu

Impact problems arise in many practical applications. The need for obtaining an accurate model for the inelastic impact is a challenging problem. In general, two approaches are common in solving the impact problems: the impulse-momentum and the compliance based methods. The former approach included the coefficient of restitution which provides a mechanism to solve the problem explicitly. While the compliance methods are generally tailored to solve elastic problems, researchers in the field have proposed several mechanisms to include inelastic losses. In this paper, we present correlations between the coefficient of restitution in the impulse-momentum based method and the contact stiffness in the compliance methods. We conducted numerical analysis to show that the resulting solutions are indeed identical for a specific range of impact conditions. The impulse-momentum based model is considered as a reference case to compare the post impact velocities. The numerical results showed that, the impulse-momentum and the compliance based methods can produce similar outcomes for specific range of coefficient of restitution if they satisfied a set of end conditions. The correlations lead to introduce a new contact force model with hysteresis damping for low coefficient of restitution impact.


Author(s):  
Margarida Machado ◽  
Paulo Flores

A general and comprehensive analysis on the continuous contact force models in multibody dynamics is presented and a novel contact force model is proposed. The force models are developed based on the foundation of the Hertz law together with a hysteresis damping parameter that accounts for the energy dissipation during the contact process. In a simple way, these contact force models are based on the analysis and development of three main issues: (i) the dissipated energy associated with the coefficient of restitution that includes the balance of kinetic energy and the conservation of the linear momentum between the initial and final instant of contact; (ii) the stored elastic energy, representing part of initial kinetic energy, which is evaluated as the work done by the contact force developed during the contact process; (iii) the dissipated energy due to internal damping, which is evaluated by modeling the contact process as a single degree-of-freedom system to obtain a hysteresis damping factor. This factor takes into account the geometrical and material properties, as well as the kinematic characteristics of the contacting bodies. The proposed contact force model has the great merit that can be used for contact problems involving materials with low or moderate values of coefficient of restitution. This contact force model is suitable to be included into the equations of motion of a multibody system and contributes to their stable numerical resolution. Two demonstrative examples of application are used to provide the results that support the analysis and discussion of procedures and methodologies adopted in this work.


Author(s):  
Hamid M. Lankarani ◽  
Parviz E. Nikravesh

Abstract A continuous analysis method for the direct-central impact of two solid particles is presented. Based on the assumption that local plasticity effects are the sole factor accounting for the dissipation of energy in impact, a Hertzian contact force model with permanent indentation is constructed. Utilizing energy and momentum considerations, the unknown parameters in the model are analytically evaluated in terms of a given coefficient of restitution and velocities before impact. The equations of motion of the two solids may then be integrated forward in time knowing the variation of the contact force during the contact period. For Illustration, an impact of two soft metallic particles is studied.


2022 ◽  
Vol 168 ◽  
pp. 108739
Author(s):  
Jie Zhang ◽  
Xu Liang ◽  
Zhonghai Zhang ◽  
Guanhua Feng ◽  
Quanliang Zhao ◽  
...  

2018 ◽  
Vol 44 (4) ◽  
pp. 397-419 ◽  
Author(s):  
Yinhua Shen ◽  
Dong Xiang ◽  
Xiang Wang ◽  
Li Jiang ◽  
Yaozhong Wei

Author(s):  
H. M. Lankarani ◽  
P. E. Nikravesh

Abstract A continuous contact force model for the impact analysis of a two-particle collision is presented. The model uses the general trend of the Hertz contact law. A hysteresis damping function is encorporated in the model which represents the dissipated energy in impact. The parameters in the model are determined, and the validity of the model is established. The model is then generalized to the impact analysis between two bodies of a multibody system. A continuous analysis is performed using the equations of motion of either the multibody system or an equivalent two-particle model of the colliding bodies. For the latter, the concept of effective mass is presented in order to compensate for the effects of joint forces in the system. For illustration, the impact situation between a slider-crank mechanism and another sliding block is considered.


Author(s):  
Mohamed B. Trabia

Abstract A model for elastic-plastic impact analysis of solids is presented. This model is valid for the cases when plasticity accounts for the absorption of energy during impact. It is assumed that impact forces follow continuous Hertz contact force model. The model depends on a new mechanism for energy absorption in the impacted solids. The method yields the relative velocity of impact needed to initiate permanent deformation, coefficient of restitution, and impact time. As an example, impact between spheres is considered. Comparison between analytical and experimental results is included.


Author(s):  
Mohammad Hadi Bordbar ◽  
Timo Hyppanen

The contact force model is very important to describe the grain collision process accurately. In this research, the linear/nonlinear contact force models and normal coefficient of restitution in different impact velocities has been studied. A new contact force model for describing the normal collision between two visco-elastic spherical particles has been suggested and the ability of this new model in predicting the correct behavior of normal contact has been confirmed. The constitutive equations of this model have been solved numerically and the result shows a better conformity with experimental result reported by Bridge et al. [1] than the previous models, such as the model presented by Brilliantov et al. [2]. By using the suitable finite elements model, the stress and deformation of particles during the collision has been obtained and the result of the finite elements model shows a good conformity with our new suggested contact force model in the case of elastic and visco-elastic contact. The behavior of normal coefficient of restitution in multisize spherical particles in different impact velocities and effect of the size on it has been experimentally studied. In addition to our more suitable contact force model, we achieved some nice conclusions from our experimental data about the loss of energy during the multisize collision and effect of size difference on this loss.


Sign in / Sign up

Export Citation Format

Share Document