Dynamic analysis of the flexible hub-beam system based on rigid-flexible coupling mechanism

Author(s):  
Xiaowei Guo ◽  
Xin Yang ◽  
Fuqiang Liu ◽  
Zhangfang Liu ◽  
Xiaolin Tang

The flexible hub-beam system is a typical structure of the rigid-flexible coupling dynamic system. In this paper, the dynamic property of the flexible hub-beam system is investigated. First, based on the dynamic analysis of the flexible beam in the flexible hub-beam system, the dynamic model of a flexible hub-beam-tip mass system is established and researched. Second, the dynamic response of the flexible beam under different external loads, including end concentrated load, end sinusoidal load, and uniform load, is analyzed and calculated. Finally, the influence of magnitude, direction, and type of load on the dynamic response of the flexible beam is also discussed. This research can provide a novel strategy for controlling the maximum stress of the structural components to be lower than the yield stress of the material, and flexible components remain in the linear elastic range even under the condition of high-speed rotation.

2006 ◽  
Vol 13 (4-5) ◽  
pp. 233-254 ◽  
Author(s):  
Paulo S. Varoto ◽  
Demian G. Silva

Flexible structures are frequently subjected to multiple inputs when in the field environment. The accurate determination of the system dynamic response to multiple inputs depends on how much information is available from the excitation sources that act on the system under study. Detailed information include, but are not restricted to appropriate characterization of the excitation sources in terms of their variation in time and in space for the case of distributed loads. Another important aspect related to the excitation sources is how inputs of different nature contribute to the measured dynamic response. A particular and important driving mechanism that can occur in practical situations is the parametric resonance. Another important input that occurs frequently in practice is related to acoustic pressure distributions that is a distributed type of loading. In this paper, detailed theoretical and experimental investigations on the dynamic response of a flexible cantilever beam carrying a tip mass to simultaneously applied external acoustic and parametric excitation signals have been performed. A mathematical model for transverse nonlinear vibration is obtained by employing Lagrange’s equations where important nonlinear effects such as the beam’s curvature and quadratic viscous damping are accounted for in the equation of motion. The beam is driven by two excitation sources, a sinusoidal motion applied to the beam’s fixed end and parallel to its longitudinal axis and a distributed sinusoidal acoustic load applied orthogonally to the beam’s longitudinal axis. The major goal here is to investigate theoretically as well as experimentally the dynamic behavior of the beam-lumped mass system under the action of these two excitation sources. Results from an extensive experimental work show how these two excitation sources interacts for various testing conditions. These experimental results are validated through numerically simulated results obtained from the solution of the system’s nonlinear equation of motion.


2005 ◽  
Vol 32 (2) ◽  
pp. 173-190 ◽  
Author(s):  
Guo-Ping Cai ◽  
Jia-Zhen Hong ◽  
Simon X. Yang

Author(s):  
Jianhong Hou ◽  
Guofeng Yao ◽  
Huili Huang

In this paper, the dynamic response of a spatial four-bar mechanism with a spherical clearance joint with flexible socket is investigated. Previous research treats the socket as a whole rigid part and neglects the flexibility of the socket. In order to better describe the influence of the spherical clearance joint, a rigid-flexible coupling model of a four-bar mechanism is established, in which the socket of the spherical clearance joint is treated as flexible body. The dynamic responses of this spatial mechanism are discussed for the mechanism with a flexible socket and the case with traditional rigid socket. Furthermore, the effects of clearance size and driving speed are also separately discussed. The results demonstrated that the dynamic response of mechanism is affected by the clearance joint. The socket flexibility can relieve the undesired effects of the clearance on the responses of the mechanism with clearance. The flexible socket acts as a suspension for the mechanism with clearance joint.


2014 ◽  
Vol 14 (08) ◽  
pp. 1440021
Author(s):  
Xiaoling Bai ◽  
Yumei Wen ◽  
Ping Li ◽  
Jin Yang ◽  
Xiao Peng ◽  
...  

Cantilever beams have found intensive and extensive uses as underlying mechanisms for energy transduction in sensors as well as in energy harvesters. In magnetoelectric (ME) transduction, the underlying cantilever beam usually will undergo magnetic coupling effect. As the beam itself is either banded with magnetic transducer or magnets, the dynamic motion of the cantilever can be modified due to the magnetic force between the magnets and ME sensors. In this study, the dynamic response of a typical spiral cantilever beam with magnetic coupling is investigated. The spiral cantilever acts as the resonator of an energy harvester with a tip mass in the form of magnets, and a ME transducer is positioned in the air gap and interacts with the magnets. It is expected that this spiral configuration is capable of performing multiple vibration modes over a small frequency range and the response frequencies can be magnetically tunable. The experimental results show that the magnetic coupling between the magnets and the transducer plays a favorable role in achieving tunable resonant frequencies and reducing the frequency spacings. This will benefits the expansion of the response band of a device and is especially useful in energy harvesting.


1991 ◽  
Vol 4 (4) ◽  
pp. 347-354 ◽  
Author(s):  
Elias G. Abu‐Saba ◽  
William M. McGinley ◽  
Raymond C. Montgomery
Keyword(s):  

2013 ◽  
Vol 13 (01) ◽  
pp. 1350010 ◽  
Author(s):  
IOANNIS G. RAFTOYIANNIS ◽  
GEORGE T. MICHALTSOS

Telescopic cranes are usually steel beam systems carrying a load at the tip while comprising at least one constant and one moving part. In this work, an analytical model suitable for the dynamic analysis of telescopic cranes boom is presented. The system considered herein is composed — without losing generality — of two beams. The first one is a jut-out beam on which a variable in time force is moving with constant velocity and the second one is a cantilever with length varying in time that is subjected to its self-weight and a force at the tip also changing with time. As a result, the eigenfrequencies and modal shapes of the second beam are also varying in time. The theoretical formulation is based on a continuum approach employing the modal superposition technique. Various cases of telescopic cranes boom are studied and the analytical results obtained in this work are tabulated in the form of dynamic response diagrams.


2015 ◽  
Vol 15 (02) ◽  
pp. 1450040 ◽  
Author(s):  
Seyed Mojtaba Hozhabrossadati ◽  
Ahmad Aftabi Sani ◽  
Masood Mofid

This technical note addresses the free vibration problem of an elastically restrained Euler–Bernoulli beam with rotational spring-lumped rotary inertia system at its mid-span hinge. The governing differential equations and the boundary conditions of the beam are presented. Special attention is directed toward the conditions of the intermediate spring-mass system which plays a key role in the solution. Sample frequency parameters of the beam system are solved and tabulated. Mode shapes of the beam are also plotted for some spring stiffnesses.


Sign in / Sign up

Export Citation Format

Share Document