Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface

Author(s):  
Ehsan Arshid ◽  
Ali Kiani ◽  
Saeed Amir

The vibration analysis of an annular plate made up of functionally graded magneto-electro-elastic materials subjected to multi physical loads is presented. The plate is in thermal environment and temperature is distributed non-uniformly in its thickness direction. In addition, the plate is assumed moderately thick, the material properties vary through the thickness, and the exact neutral surface position is determined and took into account. According to Hamilton’s principle and the first-order shear deformation theory, the governing motion equations are extracted. Numerical results for various boundary conditions are obtained via the generalized differential quadrature method and are validated in simpler states with those of the literature. The effects of different parameters such as material property gradient index, multi physical loads, temperature variations, boundary conditions and geometric specifications of the plate on the natural frequencies and mode shapes are investigated. Temperature changes have little effect on the natural frequencies and the effect of electric potential on them is opposite of magnetic one. In other words, by increasing the magnetic potential, the rigidity of the plate increases too, and the frequency increases. The results of this study are useful to design more efficient sensors and actuators used in the smart or intelligent structures.

2017 ◽  
Vol 864 ◽  
pp. 162-166
Author(s):  
Tae Kyung Lim ◽  
Ji Hwan Kim

This work presents the micro-mechanical models in thermal environment for the vibration behavior of Functionally Graded Materials (FGMs) plate using First-order Shear Deformation Theory (FSDT). In the formulation, the heat transfer effects and the temperature-dependent material properties are considered. Relative estimation of micromechanical behaviors of Mori-Tanaka Method (MTM) is used. And, neutral surface concept is adopted as the reference plane due to the asymmetry in the thickness direction of the model. In the numerical analysis, Finite Element Method is applied for various volume fractions and temperature rising conditions. Also Power-law and Sigmoid FGMs are discussed in thermo-elastic vibration characteristics.


Author(s):  
Ehsan Arshid ◽  
Ali Kiani ◽  
Saeed Amir ◽  
Mustafa Zarghami Dehaghani

The current study aims to analyze the asymmetric free vibration behavior of shear deformable functionally graded magneto-electro-thermo-elastic circular plates. The plate’s displacements are described by employing the first-order shear deformation theory and based on the von Karman assumptions, the strains and displacements are related together. Using Hamilton’s principle and variational formulation, the governing motion equations and also the associated boundary conditions have been derived. The generalized differential quadrature method is applied to discretize and solve them. The effects of the most important parameters such as material gradient index, electromagnetic loads, boundary conditions, and also aspect ratio of the plate on the natural frequencies and mode shapes of the plate are considered and discussed in details. The results show that the effect of electric potential on the natural frequency is the opposite of the magnetic one. In other words as the magnetic potential increases, the rigidity of the plate increases too and the frequency enhances. The results are compared and verified with the simpler states in literature. The findings of this study are useful for designing more efficient sensors and actuators used in smart or intelligent structures.


2017 ◽  
Vol 21 (2) ◽  
pp. 503-531 ◽  
Author(s):  
Keivan Torabi ◽  
Hasan Afshari

As a useful tool for designing wings and tail fins of aircrafts, this paper presents an optimization for flutter characteristics of cantilevered functionally graded sandwich plates. The plate is composed of an isotropic homogeneous core and two functionally graded face sheets. The plate is modeled based on the first-order shear deformation theory. The aerodynamic pressure is estimated using supersonic piston theory and using Hamilton's principle, the set of governing equations and boundary conditions are then derived. Applying a transformation of coordinates, governing equations and boundary conditions are converted and solved numerically by differential quadrature method. Natural frequencies, damping ratio, corresponding mode shapes, critical aerodynamic pressure, and flutter frequency are calculated. In order to achieve an optimum design, particle swarm optimization is employed to find the best values of aspect ratio, thickness of the plate, thickness of the core, power law index, and angles of the plate which increase critical aerodynamic pressure. Some constrains on the angles of the plate and its mass and area (lift force) are also considered.


2014 ◽  
Vol 21 (4) ◽  
pp. 571-587 ◽  
Author(s):  
Hamid Reza Saeidi Marzangoo ◽  
Mostafa Jalal

AbstractFree vibration analysis of functionally graded (FG) curved panels integrated with piezoelectric layers under various boundary conditions is studied. A panel with two opposite edges is simply supported, and arbitrary boundary conditions at the other edges are considered. Two different models of material property variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential law distribution of the material properties through the thickness are considered. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. For the simply supported boundary conditions, closed-form solution is given by making use of the Fourier series expansion, and applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free-end conditions. Natural frequencies of the hybrid curved panels are presented by solving the eigenfrequency equation, which can be obtained by using edges boundary conditions in this state equation. The results obtained for only FGM shell is verified by comparing the natural frequencies with the results obtained in the literature.


2018 ◽  
Vol 18 (10) ◽  
pp. 1850123 ◽  
Author(s):  
Hamed Safarpour ◽  
Kianoosh Mohammadi ◽  
Majid Ghadiri ◽  
Mohammad M. Barooti

This article investigates the flexural vibration of temperature-dependent and carbon nanotube-reinforced (CNTR) cylindrical shells made of functionally graded (FG) porous materials under various kinds of thermal loadings. The equivalent material properties of the cylindrical shell of concern are estimated using the rule of mixture. Both the cases of uniform distribution (UD) and FG distribution patterns of reinforcements are considered. Thermo-mechanical properties of the cylindrical shell are supposed to vary through the thickness and are estimated using the modified power-law rule, by which the porosities with even and uneven types are approximated. As the porosities occur inside the FG materials during the manufacturing process, it is necessary to consider their impact on the vibration behavior of shells. The present study is featured by consideration of different types of porosities in various CNT reinforcements under various boundary conditions in a single model. The governing equations and boundary conditions are developed using Hamilton's principle and solved by the generalized differential quadrature method. The accuracy of the present results is verified by comparison with existing ones and those by Navier's method. The results show that the length to radius ratio and temperature, as well as CNT reinforcement, porosity, thermal loading, and boundary conditions, play an important role on the natural frequency of the cylindrical shell of concern in thermal environment.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Manish Bhandari ◽  
Kamlesh Purohit

Functionally graded materials (FGMs) are one of the advanced materials capable of withstanding the high temperature environments. The FGMs consist of the continuously varying composition of two different materials. One is an engineering ceramic to resist the thermal loading from the high-temperature environment, and the other is a light metal to maintain the structural rigidity. In the present study, the properties of the FGM plate are assumed to vary along the thickness direction according to the power law distribution, sigmoid distribution, and exponential distribution. The fundamental equations are obtained using the first order shear deformation theory and the finite element formulation is done using minimum potential energy approach. The numerical results are obtained for different distributions of FGM, volume fractions, and boundary conditions. The FGM plate is subjected to thermal environment and transverse UDL under thermal environment and the response is analysed. Numerical results are provided in nondimensional form.


Author(s):  
Pabitra Maji ◽  
Mrutyunjay Rout ◽  
Amit Karmakar

Finite element procedure is employed to analyze the free vibration characteristics of rotating functionally graded carbon nanotubes reinforced composite conical shell with pretwist under the thermal environment. In this paper, four types of carbon nanotube grading are considered, wherein the distribution of carbon nanotubes are made through the thickness direction of the conical shell. An eight-noded isoparametric shell element is used in the present formulation to model the panel based on the first-order shear deformation theory. For moderate rotational speeds, the generalized dynamic equilibrium equation is derived from Lagrange’s equation of motion, neglecting the Coriolis effect. The finite element code is developed to investigate the effect of twist angle, temperature, aspect ratio, and rotational speed on natural frequencies. The mode shapes of a carbon nanotube reinforced functionally graded conical shell at different twist angles and rotational speeds are also presented.


2017 ◽  
Vol 26 (1-2) ◽  
pp. 9-24 ◽  
Author(s):  
Hamed Safarpour ◽  
Kianoosh Mohammadi ◽  
Majid Ghadiri

AbstractIn this article, the vibrational analysis of temperature-dependent cylindrical functionally graded (FG) microshells surrounded by viscoelastic a foundation is investigated by means of the modified couple stress theory (MCST). MCST is applied to this model to be productive in design and analysis of micro actuators and micro sensors. The modeled cylindrical FG microshell, its equations of motion and boundary conditions are derived by Hamilton’s principle and the first-order shear deformation theory (FSDT). For the first time, in the present study, functionally graded length scale parameter which changes along the thickness has been considered in the temperature-dependent cylindrical FG microshell. The accuracy of the present model is verified with previous studies and also with those obtained by analytical Navier method. The novelty of the current study is consideration of viscoelastic foundation, various thermal loadings and size effect as well as satisfying various boundary conditions implemented on the temperature-dependent cylindrical FG microshell using MCST. Generalized differential quadrature method (GDQM) is applied to discretize the equations of motion. Then, some factors are investigated such as the influence of length to radius ratio, damping, Winkler and Pasternak foundations, different temperature changes, circumferential wave numbers, and boundary conditions on natural frequency of the cylindrical FG microshell. The results have many applications such as modeling of microrobots and biomedical microsystems.


Author(s):  
A Hasani Baferani ◽  
A R Saidi ◽  
E Jomehzadeh

The aim of this article is to find an exact analytical solution for free vibration characteristics of thin functionally graded rectangular plates with different boundary conditions. The governing equations of motion are obtained based on the classical plate theory. Using an analytical method, three partial differential equations of motion are reformulated into two new decoupled equations. Based on the Navier solution, a closed-form solution is presented for natural frequencies of functionally graded simply supported rectangular plates. Then, considering Levy-type solution, natural frequencies of functionally graded plates are presented for various boundary conditions. Three mode shapes of a functionally graded rectangular plate are also presented for different boundary conditions. In addition, the effects of aspect ratio, thickness—length ratio, power law index, and boundary conditions on the vibration characteristics of functionally graded rectangular plates are discussed in details. Finally, it has been shown that the effects of in-plane displacements on natural frequencies of functionally graded plates under different boundary conditions have been studied.


2019 ◽  
Vol 50 (9-11) ◽  
pp. 267-290
Author(s):  
Ali Bakhsheshy ◽  
Hossein Mahbadi

This article develops the modified couple stress theory to study the free vibration of bi-directional functionally graded microplates subjected to multidimensional temperature distribution. Third-order shear deformation and classical theories of plates are adapted for free vibration analysis of thick and thin microplates, respectively. Employing the third-order shear deformation theory, both normal and shear deformations are considered without the need for shear correction factor. Material of the bi-directional functionally graded microplate is graded smoothly through the length and thickness of the microplate. Gradient of the material is assumed to obey from the power law in terms of the volume fraction of the constituents. Assuming the uniform and nonuniform temperature distributions, the effect of thermal environment on dynamic behavior of the microplate is discussed in detail. Applying the Ritz method, the displacement field is expanded by admissible functions which satisfy the essential boundary conditions, and Hamilton principle is employed to determine the natural frequencies of the microplate. Developed model has been applied to determine the natural frequencies in problems of thin/thick, one-directional/bi-directional functionally graded, and homogeneous/nonhomogeneous microplates. Effects of parameters such as the thermal environment, power law indexes [Formula: see text] and length scale parameter on free vibration of these problems are studied in detail. The results show that higher values of length scale parameter and temperature rise decrease the natural frequency of the bi-directional functionally graded microplate. According to results obtained by classical and third-order shear deformation theories, the third-order shear deformation theory is proposed for vibration analysis of microplates with thickness-to-length ratio less than five.


Sign in / Sign up

Export Citation Format

Share Document