Optimization of flutter boundaries of cantilevered trapezoidal functionally graded sandwich plates

2017 ◽  
Vol 21 (2) ◽  
pp. 503-531 ◽  
Author(s):  
Keivan Torabi ◽  
Hasan Afshari

As a useful tool for designing wings and tail fins of aircrafts, this paper presents an optimization for flutter characteristics of cantilevered functionally graded sandwich plates. The plate is composed of an isotropic homogeneous core and two functionally graded face sheets. The plate is modeled based on the first-order shear deformation theory. The aerodynamic pressure is estimated using supersonic piston theory and using Hamilton's principle, the set of governing equations and boundary conditions are then derived. Applying a transformation of coordinates, governing equations and boundary conditions are converted and solved numerically by differential quadrature method. Natural frequencies, damping ratio, corresponding mode shapes, critical aerodynamic pressure, and flutter frequency are calculated. In order to achieve an optimum design, particle swarm optimization is employed to find the best values of aspect ratio, thickness of the plate, thickness of the core, power law index, and angles of the plate which increase critical aerodynamic pressure. Some constrains on the angles of the plate and its mass and area (lift force) are also considered.

2017 ◽  
Vol 21 (6) ◽  
pp. 1906-1929 ◽  
Author(s):  
Abdelkader Mahmoudi ◽  
Samir Benyoucef ◽  
Abdelouahed Tounsi ◽  
Abdelkader Benachour ◽  
El Abbas Adda Bedia ◽  
...  

In this paper, a refined quasi-three-dimensional shear deformation theory for thermo-mechanical analysis of functionally graded sandwich plates resting on a two-parameter (Pasternak model) elastic foundation is developed. Unlike the other higher-order theories the number of unknowns and governing equations of the present theory is only four against six or more unknown displacement functions used in the corresponding ones. Furthermore, this theory takes into account the stretching effect due to its quasi-three-dimensional nature. The boundary conditions in the top and bottoms surfaces of the sandwich functionally graded plate are satisfied and no correction factor is required. Various types of functionally graded material sandwich plates are considered. The governing equations and boundary conditions are derived using the principle of virtual displacements. Numerical examples, selected from the literature, are illustrated. A good agreement is obtained between numerical results of the refined theory and the reference solutions. A parametric study is presented to examine the effect of the material gradation and elastic foundation on the deflections and stresses of functionally graded sandwich plate resting on elastic foundation subjected to thermo-mechanical loading.


Author(s):  
Ehsan Arshid ◽  
Ali Kiani ◽  
Saeed Amir

The vibration analysis of an annular plate made up of functionally graded magneto-electro-elastic materials subjected to multi physical loads is presented. The plate is in thermal environment and temperature is distributed non-uniformly in its thickness direction. In addition, the plate is assumed moderately thick, the material properties vary through the thickness, and the exact neutral surface position is determined and took into account. According to Hamilton’s principle and the first-order shear deformation theory, the governing motion equations are extracted. Numerical results for various boundary conditions are obtained via the generalized differential quadrature method and are validated in simpler states with those of the literature. The effects of different parameters such as material property gradient index, multi physical loads, temperature variations, boundary conditions and geometric specifications of the plate on the natural frequencies and mode shapes are investigated. Temperature changes have little effect on the natural frequencies and the effect of electric potential on them is opposite of magnetic one. In other words, by increasing the magnetic potential, the rigidity of the plate increases too, and the frequency increases. The results of this study are useful to design more efficient sensors and actuators used in the smart or intelligent structures.


2012 ◽  
Vol 433-440 ◽  
pp. 4920-4924 ◽  
Author(s):  
Fatemeh Farhatnia ◽  
Mohammad Ali Bagheri ◽  
Amin Ghobadi

In this paper, buckling analysis of functionally graded (FG) thick beam under different conditions is presented. Based on the first order shear deformation theory, governing equations are obtained for Thimoshenko beam which is subjected to mechanical loads. In functionally graded materials (FGMs) the material properties obeying a simple power law is assumed to vary through thickness. In order to solve the buckling differential equations, Generalized Differential Quadrature Method (GDQM) is employed and thus a set of eigenvalue equations resulted. For solving this eigenvalue problem, a computer program was developed in a way that the influence of different parameters such as height to length ratio, various volume fraction functions and boundary conditions were included. Non-dimensional critical stress was calculated for simply-simply, clamped-simply and clamped-clamped supported beams. The results of GDQ method were compared with reported results from solving the Finite element too. The comparison showed the accuracy of obtained results clearly in this work.


2017 ◽  
Vol 21 (8) ◽  
pp. 2887-2920 ◽  
Author(s):  
Keivan Torabi ◽  
Hasan Afshari ◽  
Farhad Haji Aboutalebi

In this article, free flexural vibration and supersonic flutter analyses are studied for cantilevered trapezoidal plates composed of two homogeneous isotropic face sheets and an orthotropic honeycomb core. The plate is modeled based on the first-order shear deformation theory, and aerodynamic pressure of external flow with desired flow angle is estimated via the piston theory. For this goal, first applying the Hamilton's principle, the set of governing equations and boundary conditions are derived. Then, using a transformation of coordinates, the governing equations and boundary conditions are converted from the original coordinates into new computational ones. Finally, the differential quadrature method is employed and natural frequencies, corresponding mode shapes, and critical speed are numerically achieved. Accuracy of the proposed solution is confirmed by the finite element simulations and published experimental results. After the validation, effect of various parameters on the vibration and flutter characteristics of the plate are investigated. It is concluded that geometry of hexagonal cells in the honeycomb core has a weak effect on the natural frequencies and critical speed of the sandwich plate, whereas thickness of the honeycomb core has main influence on the natural frequencies and the critical speed. Besides, it is shown that the honeycomb core thickness has optimum values that lead to the most growth in the natural frequencies or critical speed. These optimum magnitudes can be taken into account by designers to increase the natural frequencies or expand flutter boundaries and make aircrafts safer in supersonic flights. It is also concluded that geometrical parameters of the hexagonal cells and thickness of the honeycomb core have no significant effect on the value of the critical flow angle.


Author(s):  
Ehsan Arshid ◽  
Ali Kiani ◽  
Saeed Amir ◽  
Mustafa Zarghami Dehaghani

The current study aims to analyze the asymmetric free vibration behavior of shear deformable functionally graded magneto-electro-thermo-elastic circular plates. The plate’s displacements are described by employing the first-order shear deformation theory and based on the von Karman assumptions, the strains and displacements are related together. Using Hamilton’s principle and variational formulation, the governing motion equations and also the associated boundary conditions have been derived. The generalized differential quadrature method is applied to discretize and solve them. The effects of the most important parameters such as material gradient index, electromagnetic loads, boundary conditions, and also aspect ratio of the plate on the natural frequencies and mode shapes of the plate are considered and discussed in details. The results show that the effect of electric potential on the natural frequency is the opposite of the magnetic one. In other words as the magnetic potential increases, the rigidity of the plate increases too and the frequency enhances. The results are compared and verified with the simpler states in literature. The findings of this study are useful for designing more efficient sensors and actuators used in smart or intelligent structures.


2021 ◽  
pp. 107754632110004
Author(s):  
Hassan Afshari ◽  
Hossein Amirabadi

In this article, a comprehensive study is conducted on the free vibration analysis of rotating truncated conical shells reinforced with functionally graded agglomerated carbon nanotubes The shell is modeled based on the first-order shear deformation theory, and effective mechanical properties are calculated based on the Eshelby–Mori–Tanaka scheme along with the rule of mixture. By considering centrifugal and Coriolis accelerations and initial hoop tension, the set of governing equations is derived using Hamilton’s principle and is solved numerically using the differential quadrature method Convergence and accuracy of the presented model are confirmed and the effects of different parameters on the forward and backward frequencies of the rotating carbon nanotube-reinforced truncated conical shells are investigated.


2016 ◽  
Vol 08 (04) ◽  
pp. 1650049 ◽  
Author(s):  
J. L. Mantari

In this paper, a simple and accurate sinusoidal trigonometric theory (STT) for the bending analysis of functionally graded single-layer and sandwich plates and shells is presented for the first time. The principal feature of this theory is that models the thickness stretching effect with only 4-unknowns, even less than the first order shear deformation theory (FSDT) which as it is well-known has 5-unknowns. The governing equations and boundary conditions are derived by employing the principle of virtual work. Then, a Navier-type closed-form solution is obtained for functionally graded plates and shells subjected to bi-sinusoidal load for simply supported boundary conditions. Consequently, numerical results of the present STT are compared with other refined theories, FSDT, and 3D solutions. Finally, it can be concluded that: (a) An accurate but simple 4-unknown STT with thickness stretching effect is developed for the first time. (b) Optimization procedure (described in the paper) appear to be of paramount importance for 4-unknown higher order shear deformation theories (HSDTs) of this gender, so deserves a lot of further research. (c) Transverse shear stresses results are sensitive to the theory and need carefully attention.


2021 ◽  
pp. 107754632110399
Author(s):  
Pei Zhang ◽  
Hai Qing

In this article, the well-posedness of several common nonlocal models for higher-order refined shear deformation beams is studied. Unlike the case of classic beams models, both strain-driven and stress-driven purely nonlocal theories lead to an ill-posed issue (i.e., there are excessive mandatory boundary conditions) when considering higher-order shear deformation assumption. As an effective remedy, the well-posedness of strain-driven and stress-driven two-phase nonlocal (StrainDTPN and StressDTPN) models is pertinently evidenced by studying the free vibration problem of nanobeams. The governing equations of motion and standard boundary conditions are derived from Hamilton’s principle. The integral constitutive relation is transformed equivalently to a differential form equipped with two constitutive boundary conditions. Using the generalized differential quadrature method (GDQM), the governing equations in terms of displacements are solved numerically. Numerical results show that both the StrainDTPN and StressDTPN models can predict consistent size-effects of beams with different boundary conditions.


2017 ◽  
Vol 29 (5) ◽  
pp. 741-763 ◽  
Author(s):  
Ali Kiani ◽  
Moslem Sheikhkhoshkar ◽  
Ali Jamalpoor ◽  
Mostafa Khanzadi

In the present article, according to the nonlocal elasticity theory within the framework of the third-order shear deformable plate assumption, the theoretical analysis of thermomechanical vibration response of magneto-electro-thermo-elastic nanoplate made of functionally graded materials resting on the visco-Pasternak medium is carried out. The simply supported magneto-electro-thermo-elastic nanoplate is supposed to subject to initial external electric, magnetic potentials, and temperature environment. The material characteristics of magneto-electro-thermo-elastic nanoplate are assumed to be variable continuously across the thickness direction based upon power law distribution. Hamilton’s principle is utilized to achieve the partial differential equations and corresponding boundary conditions. The equilibrium equations are solved analytically to determine the complex eigenfrequency using Navier’s approach which satisfies the simply supported boundary conditions. Numerical studies are performed to illustrate the dependency of the natural frequency of the system on the damping coefficient of the visco-Pasternak medium, nonlocal parameter, aspect ratio, temperature change, volume fraction index of functionally graded material, initial external electric voltage, initial external magnetic potential, and plate thickness. It is clearly indicated that these factors have highly significant impacts on the dynamic behavior of the proposed system.


2018 ◽  
Vol 29 (11) ◽  
pp. 2344-2361 ◽  
Author(s):  
Mohammad Hassan Shojaeefard ◽  
Hamed Saeidi Googarchin ◽  
Mohammad Mahinzare ◽  
Morteza Adibi

This article investigates free vibration of a functionally graded piezomagnetic material cylindrical nanoshell embedded in viscoelastic media under rotational, external electric and magnetic loadings. The governing equations of the nanoshell are derived based on Eringen’s nonlocal theory. It is found that, magnetic and piezoelectric properties of the structure change exponentially along the thickness. The rotational loading is calculated considering initial hoop tension. The results are obtained by applying generalized differential quadrature method to the governing equations and associated boundary conditions. Results also include those achieved for clamped-clamped and simply hinged-hinged boundary conditions. It is found that free vibration characteristics of functionally graded piezomagnetic material cylindrical nanoshell are influenced by several factors including angular velocity, length scale parameter, external voltage, external amperage, functionally graded power index, and viscoelastic media parameters.


Sign in / Sign up

Export Citation Format

Share Document