Fabrication of flapping-wing micromechanism assembly using selective laser melting and aerodynamic performance measures

Author(s):  
Surendar Ganesan ◽  
Balasubramanian Esakki ◽  
Lung-Jieh Yang ◽  
D Rajamani ◽  
M Silambarsan ◽  
...  

The development of a flapping wing microaerial vehicle mechanism with a high strength-to-weight ratio to withstand high flapping frequency is of significant interest in aerospace applications. The traditional manufacturing methods such as injection moulding and wire-cut electrical discharge machining suffer from high cost, labour intensiveness, and time-to-market. However, the present disruptive additive manufacturing technology is considered a viable replacement for manufacturing micromechanism components. Significantly to withstand high cyclic loads, metal-based high strength-to-weight ratio flapping wing microaerial vehicle components are the need of the hour. Hence, the present work focused on the fabrication of flapping wing microaerial vehicle micromechanism components using selective laser melting with AlSi10Mg alloy. The manufactured micromechanism components attained 99% of dimensional accuracy, and the total weight of the Evans mechanism assembly is 4 g. The scanning electron microscopy analysis revealed the laser melting surface characteristics of the Al alloy. The assembled mechanism is tested in static and dynamic environments to ensure structural rigidity. Aerodynamic forces are measured using a wind tunnel setup, and 7.5 lift and 1.2 N thrust forces are experienced that will be sufficient enough to carry a payload of 1 g camera on-board for surveillance missions. The study suggested that the metal additive manufacturing technology is a prominent solution to realize the micromechanism components effortlessly compared to conventional subtractive manufacturing.

2015 ◽  
Vol 105 (11-12) ◽  
pp. 793-797
Author(s):  
J. C. Aurich ◽  
M. Burkhart

Additive Manufacturing (AM) ist der Überbegriff für unterschiedliche Fertigungsverfahren, welche durch das schichtweise Aufbringen von Werkstoff die Herstellung von Bauteilen ermöglichen. Selective Laser Melting (SLM) ist ein additives Fertigungsverfahren zur Herstellung von Produkten mit hoher Detailgenauigkeit und Designfreiheit. Der Fachbeitrag stellt ein Konzept vor, bei dem durch systematisches Vorgehen untersucht wird, ob Produktanforderungen mit SLM besser erfüllt werden können als mit konventionellen Fertigungsverfahren.   Additive Manufacturing (AM) is the term for various manufacturing technologies that enable manufacturing of components by adding layer after layer of material. Selective Laser Melting (SLM) is an additive manufacturing technology that allows to manufacture products with high accuracy and design freedom. In this article an approach is presented to systematically examine, if product requirements can be fulfilled better with SLM than with conventional manufacturing technologies.


Author(s):  
Christian Felber ◽  
Florian Rödl ◽  
Ferdinand Haider

Abstract The most promising metal processing additive manufacturing technique in industry is selective laser melting, but only a few alloys are commercially available, limiting the potential of this technique. In particular high strength aluminum alloys, which are of great importance in the automotive industry, are missing. An aluminum 2024 alloy, reinforced by Ti-6Al-4V and B4C particles, could be used as a high strength alternative for aluminum alloys. Heat treating can be used to improve the mechanical properties of the metal matrix composite. Dynamic scanning calorimetry shows the formation of Al2Cu precipitates in the matrix instead of the expected Al2CuMg phases due to the loss of magnesium during printing, and precipitation processes are accelerated due to particle reinforcement and additive manufacturing. Strong reactions between aluminum and Ti-6Al-4V are observed in the microstructure, while B4C shows no reaction with the matrix or the titanium. The material shows high hardness, high stiffness, and low ductility through precipitation and particle reinforcement.


2015 ◽  
Vol 834 ◽  
pp. 29-33 ◽  
Author(s):  
Tatiana Vasilievna Tarasova ◽  
Anastasia Aleksandrovna Filatova ◽  
Evgenia Yurievna Dolzhikova

The article touches upon the technical problems and perspectives of implementing the Selective Laser Melting method for producing structural components for aircraft. The possibilities of additive manufacturing technology processes and their advantages in comparison with traditional methods of part formation are shown. Issues of standardization in the field of additive manufacturing, as well as terms and definitions adopted at the present time, are considered. Based on the analysis of literary sources, the necessity of developing selective laser melting methods for the specific steels and alloys used in aircraft production is shown.


Author(s):  
Sven Maricic ◽  
Iva Mrsa Haber ◽  
Ivan Veljovic ◽  
Ivana Palunko

The aim of this paper is to investigate the possibility of drone optimization by selecting and testing the best material suitable for additive manufacturing technology and generative design approach, i. e. shape optimization. The use of additive manufacturing technology enables the creation of models of more complex shapes that are difficult or impossible to produce with conventional processing methods. The complex and unconventional design of the drone body can open up many possibilities for weight reduction while maintaining the strength of the drone body. By using 3D printing in addition to FEM (Finite Element Method) analysis, and generative design it can identify areas of the drone body that are overdrawn, allowing it to either lift off material or simply change the design at these areas. Choosing the right material for this application is crucial in order to optimise the mechanical properties of the material with weight, material cost, printability and availability of the material and the 3D printing method, while at the same time reducing environmental pollution. The goal is to reduce the drone mass by 15–20 % using generative design tools. Mass is an important segment when prototyping a drone. If the drone is too heavy, more lift power is needed to keep the drone in the air, so the propellers have to turn faster and use more energy. Consequently, the reduction of drone mass should increase the take-off weight. In this article 5 commercial drones of similar characteristics are compared with the final proposal of our 3D printed drone (Prototype 1). The rotor distance between the drones, the weight of the electric motor and the take-off weight are compared. The goal was to produce a prototype with a big rotor distance-to-weight ratio, and take-off weight bigger than observed drones have. The defined goal function was optimized in order to evaluate characteristics of 12 different 3D printed materials. Following properties: ultimate strength, stiffness, durability, printability of the material, and required bed and extruder temperature for printing were taken in consideration to select optimal material. Polycarbonate proved to be the best choice for 3D printing UAVs


Sign in / Sign up

Export Citation Format

Share Document