Turbocharged spark-ignition engine performance prediction in various inlet charged air temperatures fueled with gasoline–ethanol blends

2020 ◽  
pp. 146808742093171
Author(s):  
Reza Farzam ◽  
Bahram Jafari ◽  
Fateme Kalaki

In this research, the effect of alternative fuels and the inlet charged air temperature is numerically investigated on the performance of a turbocharged spark-ignition engine. For this purpose, a one-dimensional engine and turbocharger model is created in an engine simulation and performance analysis software and validated with former experimental results. Then, the model is run with four fuel types, including two gasoline types with different octane numbers and two ethanol–gasoline blend fuels—E25 and E85. In each case, the inlet charged air temperature is changed from cold to hot condition and performance characteristics such as the spark advance timing, brake torque, brake-specific fuel consumption and thermal efficiency, emissions and the ignition delay and combustion duration are obtained from simulation results. The results illustrate that by decreasing the inlet charged air temperature, the spark timing is more advanced due to less knock and the brake torque increases. Also, the brake-specific fuel consumption and the brake NOx and CO2 decrease and thermal efficiency increases in all fuel types. The results also demonstrate that in higher ethanol percent in blend fuels, all engine performance characteristics improve except brake-specific fuel consumption; as changing the fuel at constant fuel-to-air equivalence ratio from E25 to E85 in various revolutions per minute causes a 5.8% increase in the brake torque, 1.06% increase in the thermal efficiency, 43% and 3.9% decrease in the brake NOx and CO2 and 5.8 °CA decrease in the combustion duration, on average; while the brake-specific fuel consumption and the peak pressure increase 29% and 20%, respectively.

2021 ◽  
Vol 21 (4) ◽  
pp. 289-301
Author(s):  
Mohanad Aldhaidhawi ◽  
Oras Khudhayer Obayes ◽  
Muneer Najee

In the present work, the direct-injection petrol engine (GDI) combustion, emissions and performance at different engine speeds (1500, 2000, 2500 and 3000 rpm) with a constant throttle position have been studied. The fuel considered in this work is liquid petroleum gas (LPG) and gasoline. The software adopted in all simulations by the AVL BOOST 2016. A Hyundai 2.0 liter, 16 valves and 4 cylinders engine with a compression ratio 17.5:1 is used. The effect of several inlet air temperatures (0, 10, 20, 30, 40 and 50 oC) on the engine performance, combustion and emissions are also studied. The results show that the increase in the inlet air temperature leading to increase the peak fire temperature, brake specific fuel consumption (BSFC) and nitrogen oxide (NOx). However, this process results in a reduction in the peak fire pressure, combustion period (duration), brake power and brake torque. The maximum fire temperature and maximum specific fuel consumption can be achieved when the engine speed is 3000 rpm and the inlet air temperature is 50 ºC.


2021 ◽  
Vol 9 (4A) ◽  
Author(s):  
İlker Örs ◽  
◽  
Murat Ciniviz ◽  
Bahar Sayin Kul ◽  
Ali Kahraman ◽  
...  

In this study, it was aimed to investigate the effects of a diesel-biodiesel blend (B20) and a diesel-biodiesel-bioethanol blend (BE5) on combustion parameters in addition to engine performance and exhaust emissions compared with diesel fuel. Parameters included in the evaluation was brake specific fuel consumption, brake thermal efficiency, CO, CO2, HC, NOx, smoke opacity emissions and finally cylinder pressure, heat release rate, ignition delay, some key points of the combustion phases such as start of ignition, start of combustion, CA50 and CA90 and combustion duration. Engine tests were conducted at different injection pressures of 170 bar, 190 bar, which is the original injection pressure, and 220 bar by the engine being loaded by 25, 50, 75 and 100% for the assessment of engine performance and exhaust emissions. For combustion evaluation, the data obtained at 1400 rpm, maximum torque-speed, and 2800 rpm, maximum power-speed were used, while the injection pressures were set to 170, 190 and 220 bar under full load condition. According to test results, the better performance characteristics, exhaust emissions and combustion behaviour of engine were obtained with the use of BE5 at high injection pressure. So, BE5 fuel improved brake specific fuel consumption by about 7% and brake thermal efficiency by about 6% compared to B20. In addition, while the emission values of BE5 gave better results than diesel fuel, it reduced the NOx and smoke emissions of B20 by approximately 1.4% and 6.4% respectively. Moreover, it has achieved a reduction in smoke emission of up to 45% compared to diesel fuel.


Author(s):  
Sudarsono ◽  
Anak Agung Putu Susastriawan ◽  
I Gusti Badrawada ◽  
Hary Wibowo ◽  
Dwi Laras Indrajati

In order to utilize a raw biogas as a fuel of generator set (gen-set), it is important to figure out optimum operating parameter of the gen-set, i.e. compression ratio. The present work aims to investigate the effect of compression ratio on performance of 3 kW gen-set fuelled with raw biogas and to obtain optimum compression ratio for operation of the gen-set on raw biogas. The gen-set used in the present work is bi-fuel engine, i.e. fuelled with gasoline or LPG. The performance of the engine fuelled with raw biogas in terms of brake power, brake torque, brake specific fuel consumption, and thermal efficiency is evaluated at compression ratio of 7.5, 8.5, 9.5, and 10.5. The work is carried out under electrical load of 240, 420, and 600 Watt. The result indicates that compression ratio affects the rotational speed, brake power, brake torque, brake specific fuel consumption, and thermal efficiency of the gen-set. Optimum compression ratio for the gen-set fuelled with raw biogas is 9.5. At the optimum compression ratio, maximum brake power, brake torque, and thermal efficiency of are 450.37 W, 1.66 Nm, and 46.93%, respectively. Minimum brake specific fuel is 0.59 kg/kWh at the optimum compression ratio.


Author(s):  
Evan Pelletier ◽  
Sean Brennan

Abstract The goal of this work is to develop easily generalized models of heavy duty truck engine maps that allow for approximate comparisons of engine performance, thus enabling fuel efficient matching of engines to a set of corresponding loads and routes. This is achieved by applying dimensional analysis to create a uniformly applicable, dimensionless Brake Specific Fuel Consumption (BSFC) map that fits the behavior of a wide range of diesel engines. A commonality between maps was found to occur when engine data is scaled by specific dimensional parameters that target data consistency among the primary operating points across engines. This common map highlights observable trends in engine performance based on the influence of these same parameters being scaled across engines. The resulting dimensionless engine map fits the minimum BSFC regions of four diesel engines to within 2.5 percent.


2018 ◽  
Vol 22 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Abdulvahap Cakmak ◽  
Murat Kapusuz ◽  
Orkhan Ganiyev ◽  
Hakan Ozcan

Abstract - The objective of this paper is to investigate the use of methyl acetate as oxygenated fuel blending for base gasoline in SI engine. The effects of methyl acetate on engine performance parameters (brake specific fuel consumption, brake thermal efficiency and energy consumption rate) and exhaust emissions (CO, HC, CO2 and NOx) of SI engine have been experimentally investigated. Engine experiments were conducted on a single cylinder, water cooled, spark-ignition test engine at constant moderate speed; 1500 rpm for different loads; 104, 207, 311 and 414 kPa fuelling the engine with base gasoline, M5 (95 % base gasoline +5 % methyl acetate) and M10 (90 % base gasoline +10 % methyl acetate). The results showed that adding methyl acetate to base gasoline increases the brake specific fuel consumption while reducing the brake thermal efficiency of the engine. Furthermore, it was also observed that methyl acetate addition does not have a great effect on HC emissions, however, reduces CO and increases CO2 emissions. NOx results showed a striking increase in the level of NOx emissions with the addition of methyl acetate.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 405
Author(s):  
Aritra Ganguly ◽  
Baidya Nath Murmu ◽  
Somnath Chakrabarti

An experiment has been conducted on a four-stroke, four-cylinder spark ignition engine with and without recirculation of exhaust gas for different loads at a constant speed. Two cases were considered, the first in which 10% and later 20% of the exhaust gas was directly supplied to the intake manifold at a temperature of 820°C, while in the second case the same proportions of exhaust gas were cooled in a heat-exchanger to a temperature of 210°C before supply. Engine performance parameters like brake specific fuel consumption, brake thermal efficiency were evaluated under those conditions and compared with the same engine operating without recirculation. The corresponding emission characteristics of the engine were also measured using an exhaust gas analyzer which measured the amount of NOx, CO, CO2 and un-burnt HC. The performance and emissions characteristics of the engine obtained with hot and cold EGR were compared with reference to the same engine operating without EGR. The study revealed that the performance of the engine was better in terms of brake thermal efficiency and brake specific fuel consumption with cold EGR compared to hot EGR. However, the emissions of CO and HC were higher with cold EGR compared to that of hot EGR.   


Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


2021 ◽  
Vol 8 (1) ◽  
pp. H16-H20
Author(s):  
A.V.N.S. Kiran ◽  
B. Ramanjaneyulu ◽  
M. Lokanath M. ◽  
S. Nagendra ◽  
G.E. Balachander

An increase in fuel utilization to internal combustion engines, variation in gasoline price, reduction of the fossil fuels and natural resources, needs less carbon content in fuel to find an alternative fuel. This paper presents a comparative study of various gasoline blends in a single-cylinder two-stroke SI engine. The present experimental investigation with gasoline blends of butanol and propanol and magnesium partially stabilized zirconium (Mg-PSZ) as thermal barrier coating on piston crown of 100 µm. The samples of gasoline blends were blended with petrol in 1:4 ratios: 20 % of butanol and 80 % of gasoline; 20 % of propanol and 80 % of gasoline. In this work, the following engine characteristics of brake thermal efficiency (BTH), specific fuel consumption (SFC), HC, and CO emissions were measured for both coated and non-coated pistons. Experiments have shown that the thermal efficiency is increased by 2.2 % at P20. The specific fuel consumption is minimized by 2.2 % at P20. Exhaust emissions are minimized by 2.0 % of HC and 2.4 % of CO at B20. The results strongly indicate that the combination of thermal barrier coatings and gasoline blends can improve engine performance and reduce exhaust emissions.


2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Murugan Kuppusamy ◽  
Thirumalai Ramanathan ◽  
Udhayakumar Krishnavel ◽  
Seenivasan Murugesan

The effect of thermal-barrier coatings (TBCs) reduces fuel consumption, effectively improving the engine efficiency. This research focused on a TBC with a thickness of 300 µm insulating the combustion chamber of a direct ignition (DI) engine. The piston crown, inlet and exhaust-valve head were coated using air-plasma-spray coating. Ceramic powder materials such as molybdenum (Mo) and aluminum oxide titanium dioxide (Al2O3-TiO2) were used. A performance test of the engine with the coated combustion chamber was carried out to investigate the brake power, brake thermal efficiency, volumetric efficiency, brake specific fuel consumption and air-fuel ratio. Also, an emission-characteristic test was carried out to investigate the emissions of unburned hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NO, NO2, NO3) and smoke opacity (SO). The results reveal that the brake thermal efficiency and brake specific fuel consumption show significant increases because of these coating materials. The effect of the Al2O3-TiO2 coating significantly reduces the HC and CO engine emissions.


Author(s):  
Olisaemeka C. Nwufo ◽  
Modestus Okwu ◽  
Chidiebere F. Nwaiwu ◽  
Johnson O. Igbokwe ◽  
O. Martin I. Nwafor ◽  
...  

The performance analysis of a single cylinder spark ignition engine fuelled with ethanol – petrol blends were carried out successfully at constant load conditions. E0 (Petrol), E10 (10% Ethanol, 90% Petrol), E20 (20% Ethanol, 80% Petrol) and E30 (30% Ethanol, 70% Petrol) were used as fuel. The Engine speed, mass flow rate, combustion efficiency, maximum pressure developed, brake specific fuel consumption and Exhaust gas temperature values were measured during the experiment. Using the experimental data, a Levenberg Marquardt Artificial Neural Network algorithm and Logistic sigmoid activation transfer function with a 4–10–2 model was developed to predict the brake specific fuel consumption, maximum pressure and combustion efficiency of G200 IMEX spark ignition engine using the recorded engine speed, mass flow rate, biofuels ratio and exhaust gas temperature as input variables. The performance of the Artificial Neural Network was validated by comparing the predicted data with the experimental results. The results showed that the training algorithm of Levenberg Marquardt was sufficient enough in predicting the brake specific fuel consumption, combustion pressure and combustion efficiency of the test engine. Correlation coefficient values of 0.974, 0.996 and 0.995 were obtained for brake specific fuel consumption, combustion efficiency and pressure respectively. These correlation coefficient obtained for the output parameters are very close to one (1) showing good correlation between the Artificial Neural Network predicted results and the experimental data while the Mean Square Errors were found to be very low (0.00018825 @ epoch 10 for brake specific fuel consumption, 1.0023 @ epoch 3 for combustion efficiency and 0.0013284@ epoch 5 for in-cylinder pressure). Therefore, Artificial Neural Network toolbox called up from MATLAB proved to be a useful tool for simulation of engine parameters. Artificial Neural Network model provided accurate analysis of these complex problems and has been found to be very useful for predicting the performance of the spark ignition engine. Thus, this has proved that Artificial Neural Network model could be used for predicting performance values in internal combustion engines, in this way it would be possible to conduct time and cost efficient studies instead of long experimental ones.


Sign in / Sign up

Export Citation Format

Share Document