scholarly journals Diesel Engine Characterization and Performance Scaling via Brake Specific Fuel Consumption Map Dimensional Analysis

Author(s):  
Evan Pelletier ◽  
Sean Brennan

Abstract The goal of this work is to develop easily generalized models of heavy duty truck engine maps that allow for approximate comparisons of engine performance, thus enabling fuel efficient matching of engines to a set of corresponding loads and routes. This is achieved by applying dimensional analysis to create a uniformly applicable, dimensionless Brake Specific Fuel Consumption (BSFC) map that fits the behavior of a wide range of diesel engines. A commonality between maps was found to occur when engine data is scaled by specific dimensional parameters that target data consistency among the primary operating points across engines. This common map highlights observable trends in engine performance based on the influence of these same parameters being scaled across engines. The resulting dimensionless engine map fits the minimum BSFC regions of four diesel engines to within 2.5 percent.

2020 ◽  
pp. 146808742093171
Author(s):  
Reza Farzam ◽  
Bahram Jafari ◽  
Fateme Kalaki

In this research, the effect of alternative fuels and the inlet charged air temperature is numerically investigated on the performance of a turbocharged spark-ignition engine. For this purpose, a one-dimensional engine and turbocharger model is created in an engine simulation and performance analysis software and validated with former experimental results. Then, the model is run with four fuel types, including two gasoline types with different octane numbers and two ethanol–gasoline blend fuels—E25 and E85. In each case, the inlet charged air temperature is changed from cold to hot condition and performance characteristics such as the spark advance timing, brake torque, brake-specific fuel consumption and thermal efficiency, emissions and the ignition delay and combustion duration are obtained from simulation results. The results illustrate that by decreasing the inlet charged air temperature, the spark timing is more advanced due to less knock and the brake torque increases. Also, the brake-specific fuel consumption and the brake NOx and CO2 decrease and thermal efficiency increases in all fuel types. The results also demonstrate that in higher ethanol percent in blend fuels, all engine performance characteristics improve except brake-specific fuel consumption; as changing the fuel at constant fuel-to-air equivalence ratio from E25 to E85 in various revolutions per minute causes a 5.8% increase in the brake torque, 1.06% increase in the thermal efficiency, 43% and 3.9% decrease in the brake NOx and CO2 and 5.8 °CA decrease in the combustion duration, on average; while the brake-specific fuel consumption and the peak pressure increase 29% and 20%, respectively.


Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


Author(s):  
A A Abdel-Rahman ◽  
M K Ibrahim ◽  
A A Said

This paper discusses the possibility of improving the part load performance of diesel electric turbocharged engines operating at constant speed conditions. A sequential turbocharged system is proposed, where the compressors are connected In series. The study focused on two turbocharged diesel–electric generating sets existing at Ameria Petroleum Refining Company in Alexandria, Egypt. The results of the prediction showed that, at part load, both the maximum pressure and temperature were increased, and the brake specific fuel consumption was reduced considerably (by about 10 per cent).


2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 555-566 ◽  
Author(s):  
Feyyaz Candan ◽  
Murat Ciniviz ◽  
Ilker Ors

In this study, methanol in ratios of 5-10-15% were incorporated into diesel fuel with the aim of reducing harmful exhaust gasses of Diesel engine, di-tertbutyl peroxide as cetane improver in a ratio of 1% was added into mixture fuels in order to reduce negative effects of methanol on engine performance parameters, and isobutanol of a ratio of 1% was used as additive for preventing phase separation of all mixtures. As results of experiments conducted on a single cylinder and direct injection Diesel engine, methanol caused the increase of NOx emission while reducing CO, HC, CO2, and smoke opacity emissions. It also reduced torque and power values, and increased brake specific fuel consumption values. Cetane improver increased torque and power values slightly compared to methanol-mixed fuels, and reduced brake specific fuel consumption values. It also affected exhaust emission values positively, excluding smoke opacity. Increase of injector injection pressure affected performances of methanol-mixed fuels positively. It also increased injection pressure and NOx emissions, while reducing other exhaust emissions.


2021 ◽  
Vol 21 (4) ◽  
pp. 289-301
Author(s):  
Mohanad Aldhaidhawi ◽  
Oras Khudhayer Obayes ◽  
Muneer Najee

In the present work, the direct-injection petrol engine (GDI) combustion, emissions and performance at different engine speeds (1500, 2000, 2500 and 3000 rpm) with a constant throttle position have been studied. The fuel considered in this work is liquid petroleum gas (LPG) and gasoline. The software adopted in all simulations by the AVL BOOST 2016. A Hyundai 2.0 liter, 16 valves and 4 cylinders engine with a compression ratio 17.5:1 is used. The effect of several inlet air temperatures (0, 10, 20, 30, 40 and 50 oC) on the engine performance, combustion and emissions are also studied. The results show that the increase in the inlet air temperature leading to increase the peak fire temperature, brake specific fuel consumption (BSFC) and nitrogen oxide (NOx). However, this process results in a reduction in the peak fire pressure, combustion period (duration), brake power and brake torque. The maximum fire temperature and maximum specific fuel consumption can be achieved when the engine speed is 3000 rpm and the inlet air temperature is 50 ºC.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Md. Saiful Islam ◽  
Abu Saleh Ahmed ◽  
Aminul Islam ◽  
Sidek Abdul Aziz ◽  
Low Chyi Xian ◽  
...  

This paper presents the result of investigations carried out in studying the emission and performance of diesel engine using the castor biodiesel and its blend with diesel from 0% to 40% by volume. The acid-based catalyzed transesterification system was used to produce castor biodiesel and the highest yield of 82.5% was obtained under the optimized condition. The FTIR spectrum of castor biodiesel indicates the presence of C=O and C–O functional groups, which is due to the ester compound in biodiesel. The smoke emission test revealed that B40 (biodiesel blend with 40% biodiesel and 60% diesel) had the least black smoke compared to the conventional diesel. Diesel engine performance test indicated that the specific fuel consumption of biodiesel blend was increased sufficiently when the blending ratio was optimized. Thus, the reduction in exhaust emissions and reduction in brake-specific fuel consumption made the blends of caster seed oil (B20) a suitable alternative fuel for diesel and could help in controlling air pollution.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5021
Author(s):  
Sokratis Stoumpos ◽  
Gerasimos Theotokatos

Dual fuel engines constitute a viable solution for enhancing the environmental sustainability of the shipping operations. Although these engines comply with the Tier III NOx emissions regulations when operating at the gas mode, additional measures are required to ensure such compliance at the diesel mode. Hence, this study aimed to optimise the settings of a marine four-stroke dual fuel (DF) engine equipped with exhaust gas recirculation (EGR) and air bypass (ABP) systems by employing simulation and optimisation techniques, so that the engine when operating at the diesel mode complies with the ‘Tier III’ requirements. A previous version of the engine thermodynamic model was extended to accommodate the EGR and ABP systems modelling. Subsequently, a combination of optimisation techniques including multiobjective genetic algorithms (MOGA) and design of experiments (DoE) parametric runs was employed to identify both the engine and the EGR/ABP systems settings with the objective to minimise the engine brake specific fuel consumption and reduce the NOx emissions below the Tier III limit. The derived simulation results were employed to analyse the EGR system involved interactions and their effects on the engine performance and emissions trade-offs. A sensitivity analysis was performed to reveal the interactions between considered engine settings and quantify their impact on the engine performance parameters. The derived results indicate that EGR rates up to 35% are required, so that the investigated engine with EGR and ABP systems, when operating at the diesel mode, achieves compliance with the ‘Tier III’ NOx emissions, whereas the associated engine brake specific fuel consumption penalty is up to 8.7%. This study demonstrates that the combination of EGR and ABP systems can constitute a functional solution for achieving compliance with the stringent regulatory requirements and provides a better understating of the underlined phenomena and interactions of the engine subsystems parameters variations for the investigated engine equipped with EGR and ABP systems.


REAKTOR ◽  
2017 ◽  
Vol 16 (3) ◽  
pp. 116
Author(s):  
S Syaiful ◽  
S Sobri

Diesel engines have been widely used as a mode of public transport and private vehicles because of several advantages compared to gasoline engines including greater power, fuel economy, high reliability and durability of the engine and lower CO emissions. However, diesel engines release more NOx and soot emissions into the atmosphere. This is a serious problem with the strict regulations regarding exhaust emissions. Besides problems of depletion of fossil fuel reserves require various parties to seek alternative fuels derived diesel fuel. Therefore, this work is intended to reduce soot emissions by adding LPM (low purity methanol) or wet methanol and HPM (high purity methanol) into a mixture of jatropha and diesel fuels. From this research, it is also desirable to observe the effect of methanol additive to the specific fuel consumption. Experiment method was conducted to obtain the correlation between the percentage of methanol to a brake specific fuel consumption (BSFC) and soot emissions. Methanol (LPM and HPM) was varied in the range of 5 to 15% by volume. Jatropha is in the range of 10% to 30%. The rate of EGR (exhaust gas recirculation) expressed by OEV (opening EGR valve) was varied at the opening of 0 to 100%. Engine load was varied from 25 to 100% at intervals of 25%. The engine speed was kept constant of 2000 rpm. The results show that the use of fuel mixture increases evenly BSFC of 5.2% and soot emissions of 65%. Keywords: LPM and HPM, BSFC, soot emissions, jatropha, cold EGR and diesel engine  Abstrak Mesin diesel telah banyak digunakan sebagai moda transportasi umum dan kendaraan pribadi oleh karena beberapa kelebihannya dibandingkan dengan mesin bensin diantaranya daya yang lebih besar, hemat bahan bakar, kehandalan dan ketahanan mesin yang tinggi (high realibility and durability), dan emisi CO yang lebih rendah. Akan tetapi mesin diesel melepaskan lebih banyak emisi NOx dan jelaga ke atmosfir. Hal ini menjadi permasalahan serius dengan semakin ketatnya regulasi menyangkut emisi gas buang. Selain itu permasalahan menipisnya cadangan bahan bakar fosil menuntut berbagai pihak untuk mencari bahan bakar alternatif pengganti solar. Oleh karena itu, penelitian ini bermaksud untuk mereduksi emisi jelaga dengan menambahkan LPM (low purity methanol) atau wet methanol dan HPM (high purity methanol)kedalam campuran bahan bakar jatropha dan solar. Dari penelitian ini juga diinginkan untuk mengamati pengaruh aditif metanol terhadap konsumsi bahan bakar spesifik. Metode eksperimen dilakukan untuk mendapatkan keterkaitan antara prosentase metanol terhadap brake specific fuel consumption (BSFC)dan emisi jelaga. Metanol (LPM dan HPM) divariasikan pada rentang 5% sampai 15%. Jatropha adalah pada rentang 10% sampai 30%. Laju EGR (exhaust gas recirculation) yang dinyatakan oleh OEV (opening EGR valve) divariasikan pada bukaan 0% sampai 100%. Beban mesin divariasikan dari 25% sampai 100% dengan interval 25%. Putaran mesin dipertahankan konstan 2000 rpm. Hasil-hasil penelitian menunjukkan bahwa penggunaan bahan bakar campuran rata-rata meningkatkan BSFC 5,2% dan menurunkan emisi jelaga sampai 65%.


2021 ◽  
Vol 9 (4A) ◽  
Author(s):  
İlker Örs ◽  
◽  
Murat Ciniviz ◽  
Bahar Sayin Kul ◽  
Ali Kahraman ◽  
...  

In this study, it was aimed to investigate the effects of a diesel-biodiesel blend (B20) and a diesel-biodiesel-bioethanol blend (BE5) on combustion parameters in addition to engine performance and exhaust emissions compared with diesel fuel. Parameters included in the evaluation was brake specific fuel consumption, brake thermal efficiency, CO, CO2, HC, NOx, smoke opacity emissions and finally cylinder pressure, heat release rate, ignition delay, some key points of the combustion phases such as start of ignition, start of combustion, CA50 and CA90 and combustion duration. Engine tests were conducted at different injection pressures of 170 bar, 190 bar, which is the original injection pressure, and 220 bar by the engine being loaded by 25, 50, 75 and 100% for the assessment of engine performance and exhaust emissions. For combustion evaluation, the data obtained at 1400 rpm, maximum torque-speed, and 2800 rpm, maximum power-speed were used, while the injection pressures were set to 170, 190 and 220 bar under full load condition. According to test results, the better performance characteristics, exhaust emissions and combustion behaviour of engine were obtained with the use of BE5 at high injection pressure. So, BE5 fuel improved brake specific fuel consumption by about 7% and brake thermal efficiency by about 6% compared to B20. In addition, while the emission values of BE5 gave better results than diesel fuel, it reduced the NOx and smoke emissions of B20 by approximately 1.4% and 6.4% respectively. Moreover, it has achieved a reduction in smoke emission of up to 45% compared to diesel fuel.


Sign in / Sign up

Export Citation Format

Share Document