scholarly journals The experimental investigation of diesel fuel-biofuel blends at different injection pressures in a DI diesel engine

2021 ◽  
Vol 9 (4A) ◽  
Author(s):  
İlker Örs ◽  
◽  
Murat Ciniviz ◽  
Bahar Sayin Kul ◽  
Ali Kahraman ◽  
...  

In this study, it was aimed to investigate the effects of a diesel-biodiesel blend (B20) and a diesel-biodiesel-bioethanol blend (BE5) on combustion parameters in addition to engine performance and exhaust emissions compared with diesel fuel. Parameters included in the evaluation was brake specific fuel consumption, brake thermal efficiency, CO, CO2, HC, NOx, smoke opacity emissions and finally cylinder pressure, heat release rate, ignition delay, some key points of the combustion phases such as start of ignition, start of combustion, CA50 and CA90 and combustion duration. Engine tests were conducted at different injection pressures of 170 bar, 190 bar, which is the original injection pressure, and 220 bar by the engine being loaded by 25, 50, 75 and 100% for the assessment of engine performance and exhaust emissions. For combustion evaluation, the data obtained at 1400 rpm, maximum torque-speed, and 2800 rpm, maximum power-speed were used, while the injection pressures were set to 170, 190 and 220 bar under full load condition. According to test results, the better performance characteristics, exhaust emissions and combustion behaviour of engine were obtained with the use of BE5 at high injection pressure. So, BE5 fuel improved brake specific fuel consumption by about 7% and brake thermal efficiency by about 6% compared to B20. In addition, while the emission values of BE5 gave better results than diesel fuel, it reduced the NOx and smoke emissions of B20 by approximately 1.4% and 6.4% respectively. Moreover, it has achieved a reduction in smoke emission of up to 45% compared to diesel fuel.

2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 555-566 ◽  
Author(s):  
Feyyaz Candan ◽  
Murat Ciniviz ◽  
Ilker Ors

In this study, methanol in ratios of 5-10-15% were incorporated into diesel fuel with the aim of reducing harmful exhaust gasses of Diesel engine, di-tertbutyl peroxide as cetane improver in a ratio of 1% was added into mixture fuels in order to reduce negative effects of methanol on engine performance parameters, and isobutanol of a ratio of 1% was used as additive for preventing phase separation of all mixtures. As results of experiments conducted on a single cylinder and direct injection Diesel engine, methanol caused the increase of NOx emission while reducing CO, HC, CO2, and smoke opacity emissions. It also reduced torque and power values, and increased brake specific fuel consumption values. Cetane improver increased torque and power values slightly compared to methanol-mixed fuels, and reduced brake specific fuel consumption values. It also affected exhaust emission values positively, excluding smoke opacity. Increase of injector injection pressure affected performances of methanol-mixed fuels positively. It also increased injection pressure and NOx emissions, while reducing other exhaust emissions.


2011 ◽  
Vol 142 ◽  
pp. 103-106
Author(s):  
Wen Ming Cheng ◽  
Hui Xie ◽  
Gang Li

This paper discusses the brake specific fuel consumption and brake thermal efficiency of a diesel engine using cottonseed biodiesel blended with diesel fuel. A series of experiments were conducted for the various blends under varying load conditions at a speed of 1500 rpm and 2500 rpm and the results were compared with the neat diesel. From the results, it is found that the brake specific fuel consumption of cottonseed biodiesel is slightly higher than that of diesel fuel at different engine loads and speeds, with this increase being higher the higher the percentage of the biodiesel in the blend. And the brake thermal efficiency of cottonseed biodiesel is nearly similar to that of diesel fuel at different engine loads and speeds. From the investigation, it is concluded that cottonseed biodiesl can be directly used in diesel engines without any modifications, at least in small blending ratios.


2021 ◽  
Author(s):  
Naveen Rana ◽  
Harikrishna Nagwan ◽  
Kannan Manickam

Abstract Indeed, the development of alternative fuels for use in internal combustion engines has become an essential requirement to meet the energy demand and to deal with the different problems related to fuel. The research in this domain leads to the identification of adverse fuel properties and for their solution standard limits are being defined. This paper outlines an investigation of performance and combustion characteristics of a 4-stroke diesel engine using different cymbopogon (lemongrass) - diesel fuel blends. 10% to 40% cymbopogon is mixed with diesel fuel and tested for performance characteristics like brake specific fuel consumption and brake thermal efficiency. To obtain emission characteristics smoke density in the terms of HSU has been measured. In result, it has observed that there is an increase of 5% in brake thermal efficiency and 16.33% decrease in brake specific fuel consumption. Regarding emission characteristics, a 12.9% decrease in smoke emission has been found.


Author(s):  
H. M. DHARMADHIKARI ◽  
PULI RAVI KUMAR ◽  
S. SRINIVASA RAO

In recent years, much research has been carried to find suitable alternative fuel to petroleum products. In the present investigation experimental work has been carried out to analyze the performance and emissions characteristics of a single cylinder compression ignition DI engine fuelled with the blends of mineral diesel and biodiesel at the different injection pressures. The optimal value of the injection pressure was observed as 200 bar in the range of 180 to 220 bar. The performance parameters evaluated were brake thermal efficiency, break specific fuel consumption and the emissions measured were carbon monoxide (CO), carbon dioxide (CO2), hydrocarbon (HC), and oxides of nitrogen (NOx). The results of experimental investigation with biodiesel blends with diesel are compared with that of diesel. The results indicated that the CO emissions are slightly less, HC emissions were also observed to be less for B10 and B20, and NOx emissions decreased by 39 % for B10 and 28 % for B20 compared with B100. The brake thermal efficiency of the engine decreased around 6% for all blends in comparison with diesel, and the break specific fuel consumption was slightly more for B10 and B20.


2021 ◽  
Vol 18 (22) ◽  
pp. 451
Author(s):  
Ekkachai Sutheerasak ◽  
Charoen Chinwanitcharoen ◽  
Sathaporn Chuepeng

Biofuels are an alternative fuel currently being developed to reduce the diesel-engine environmental impact. The release of carbon dioxide (CO2), nitric oxide (NO) and black smoke (BS) becomes an issue derived from diesel engines even in lean-mixture combustion causing an adverse effect to human health. The main aim of the research study is to present the use of biofuels, a mixture of diesel and 10 % palm oil ethyl ester (PEE10) and PEE10 blended with bioethanol from 5 to 20 %, compared with conventional diesel fuel. The biofuels were run on a high-speed direct injection diesel engine at a constant speed of 3,000 rpm under various loads. The use of PEE10 resulted in brake thermal efficiency (BTE) reduction by 2 % and brake specific fuel consumption (BSFC) incrementation by 8 %, but the exhaust emissions were lower than diesel, except for CO2 and NO. However, PEE10 engine performance was better and exhaust gas emissions were lower for both pollutants than diesel mixed with 10 % bioethanol. The investigation of PEE10 with increasing bioethanol revealed that the use of PEE10 blended with 5 % bioethanol (PEE10E5) can improve engine performance, while the BTE and BSFC were close to that of diesel, and exhaust emissions, especially CO2, NO and BS reduced. Moreover, BTE from PEE10E5 fueling increased by 2 % but BSFC was subtle increased, compared to PEE10. On the other hand, the increasing bioethanol from 10 to 20 % in PEE10 led to the more reduction in engine performance, but the engine pollutants were also continuously decreased. Specifically, the blend of PEE10 and 20 % bioethanol indicates that CO2, NO and BS were reduced by 10, 15 and 33 %, respectively, compared to diesel fuel. HIGHLIGHTS A mixture of diesel and 10 % palm oil ethyl ester (PEE10) has less exhaust emissions than diesel blended with 10 % palm oil methyl ester (PME10) PEE10 blended with 5 % bioethanol can improve engine performance, while the brake thermal efficiency and brake specific fuel consumption are close to that of diesel and PME10 The increasing bioethanol from 10 to 20 % in PEE10 leads to the more reduction in engine performance, but the engine pollutants, especially carbon dioxide, nitric oxide and black smoke, are also continuously decreased GRAPHICAL ABSTRACT


2018 ◽  
Vol 22 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Abdulvahap Cakmak ◽  
Murat Kapusuz ◽  
Orkhan Ganiyev ◽  
Hakan Ozcan

Abstract - The objective of this paper is to investigate the use of methyl acetate as oxygenated fuel blending for base gasoline in SI engine. The effects of methyl acetate on engine performance parameters (brake specific fuel consumption, brake thermal efficiency and energy consumption rate) and exhaust emissions (CO, HC, CO2 and NOx) of SI engine have been experimentally investigated. Engine experiments were conducted on a single cylinder, water cooled, spark-ignition test engine at constant moderate speed; 1500 rpm for different loads; 104, 207, 311 and 414 kPa fuelling the engine with base gasoline, M5 (95 % base gasoline +5 % methyl acetate) and M10 (90 % base gasoline +10 % methyl acetate). The results showed that adding methyl acetate to base gasoline increases the brake specific fuel consumption while reducing the brake thermal efficiency of the engine. Furthermore, it was also observed that methyl acetate addition does not have a great effect on HC emissions, however, reduces CO and increases CO2 emissions. NOx results showed a striking increase in the level of NOx emissions with the addition of methyl acetate.


2021 ◽  
Vol 8 (1) ◽  
pp. H16-H20
Author(s):  
A.V.N.S. Kiran ◽  
B. Ramanjaneyulu ◽  
M. Lokanath M. ◽  
S. Nagendra ◽  
G.E. Balachander

An increase in fuel utilization to internal combustion engines, variation in gasoline price, reduction of the fossil fuels and natural resources, needs less carbon content in fuel to find an alternative fuel. This paper presents a comparative study of various gasoline blends in a single-cylinder two-stroke SI engine. The present experimental investigation with gasoline blends of butanol and propanol and magnesium partially stabilized zirconium (Mg-PSZ) as thermal barrier coating on piston crown of 100 µm. The samples of gasoline blends were blended with petrol in 1:4 ratios: 20 % of butanol and 80 % of gasoline; 20 % of propanol and 80 % of gasoline. In this work, the following engine characteristics of brake thermal efficiency (BTH), specific fuel consumption (SFC), HC, and CO emissions were measured for both coated and non-coated pistons. Experiments have shown that the thermal efficiency is increased by 2.2 % at P20. The specific fuel consumption is minimized by 2.2 % at P20. Exhaust emissions are minimized by 2.0 % of HC and 2.4 % of CO at B20. The results strongly indicate that the combination of thermal barrier coatings and gasoline blends can improve engine performance and reduce exhaust emissions.


2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Murugan Kuppusamy ◽  
Thirumalai Ramanathan ◽  
Udhayakumar Krishnavel ◽  
Seenivasan Murugesan

The effect of thermal-barrier coatings (TBCs) reduces fuel consumption, effectively improving the engine efficiency. This research focused on a TBC with a thickness of 300 µm insulating the combustion chamber of a direct ignition (DI) engine. The piston crown, inlet and exhaust-valve head were coated using air-plasma-spray coating. Ceramic powder materials such as molybdenum (Mo) and aluminum oxide titanium dioxide (Al2O3-TiO2) were used. A performance test of the engine with the coated combustion chamber was carried out to investigate the brake power, brake thermal efficiency, volumetric efficiency, brake specific fuel consumption and air-fuel ratio. Also, an emission-characteristic test was carried out to investigate the emissions of unburned hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NO, NO2, NO3) and smoke opacity (SO). The results reveal that the brake thermal efficiency and brake specific fuel consumption show significant increases because of these coating materials. The effect of the Al2O3-TiO2 coating significantly reduces the HC and CO engine emissions.


2018 ◽  
Vol 3 (2) ◽  
pp. 98-105
Author(s):  
Didit Sumardiyanto ◽  
Sri Endah Susilowati

AbstrakPenelitian ini dilakukan untuk mengetahui  pengaruh  pompa injeksi bahan bakar tekanan tinggi terhadap kinerja sebuah mesin pada mesin penggerak utama MV. ALAM JAYA II yang menggunakan mesin diesel YANMAR type M22-EN. Berdasarkan data-data yang diperoleh dilapangan, setelah dilakukan pembahasan bahwa tekanan pompa injeksi berpengaruh pada kinerja mesin diesel. Untuk tekanan pompa injeksi sebesar 820 kgf/cm2, kinerja yang dihasilkan mesin adalah : Daya Indikator 1204 kgf/cm2, Daya Efektif 1016 kgf/cm2, Efisiensi Thermal Efektif 32,0% dan konsumsi bahan bakar spesifik sebesar 192 g/hp.h. Sedangkan setelah dilakukan perbaikan pompa injeksi, tekanan pompa menjadi 1120 kgf/cm2, kinerja yang dihasilkan oleh mesin adalah : Daya efektif 1399 hp, Daya Efektif 1195 hp, Efisiensi Thermal Efektif : 37.32%, dan Konsumsi Bahan Bakar Spesifik sebesar 165.7 g/hp.h Dengan adanya perbaikan pompa injeksi sehingga dapat menaikkan tekanan injeksi dari 880 kgf/cm2 menjadi 1120 kgf/cm2, maka kinerja mesin dapat ditingkatkan Kata kunci: mesin diesel,pompa injeksi, kinerja mesin AbstractThis research was conducted to determine the effect of high pressure fuel injection pump on the performance of a machine on the MV main drive engine. ALAM JAYA II which uses the YANMAR type M22-EN diesel engine. Based on the data obtained in the field, after discussion that the injection pump pressure affects the performance of the diesel engine. For injection pump pressure of 820 kgf /cm2, the engine performance is: Indicator Power 1204 kgf /cm2, Effective Power of 1016 kgf /cm2, Effective Thermal Efficiency of 32.0% and specific fuel consumption of 192 g / hp.h. Whereas after the injection pump repairs, the pump pressure becomes 1120 kgf / cm2, the performance produced by the engine is: Effective 1399 hp, Effective 1195 hp, Effective Thermal Efficiency: 37.32%, and Specific Fuel Consumption of 165.7 g / hp. H With the improvement of the injection pump so that it can increase the injection pressure from 880 kgf / cm2 to 1120 kgf /cm2, the engine performance can be improvedKeywords: diesel engine, injection pump, engine performance


2020 ◽  
pp. 146808742093171
Author(s):  
Reza Farzam ◽  
Bahram Jafari ◽  
Fateme Kalaki

In this research, the effect of alternative fuels and the inlet charged air temperature is numerically investigated on the performance of a turbocharged spark-ignition engine. For this purpose, a one-dimensional engine and turbocharger model is created in an engine simulation and performance analysis software and validated with former experimental results. Then, the model is run with four fuel types, including two gasoline types with different octane numbers and two ethanol–gasoline blend fuels—E25 and E85. In each case, the inlet charged air temperature is changed from cold to hot condition and performance characteristics such as the spark advance timing, brake torque, brake-specific fuel consumption and thermal efficiency, emissions and the ignition delay and combustion duration are obtained from simulation results. The results illustrate that by decreasing the inlet charged air temperature, the spark timing is more advanced due to less knock and the brake torque increases. Also, the brake-specific fuel consumption and the brake NOx and CO2 decrease and thermal efficiency increases in all fuel types. The results also demonstrate that in higher ethanol percent in blend fuels, all engine performance characteristics improve except brake-specific fuel consumption; as changing the fuel at constant fuel-to-air equivalence ratio from E25 to E85 in various revolutions per minute causes a 5.8% increase in the brake torque, 1.06% increase in the thermal efficiency, 43% and 3.9% decrease in the brake NOx and CO2 and 5.8 °CA decrease in the combustion duration, on average; while the brake-specific fuel consumption and the peak pressure increase 29% and 20%, respectively.


Sign in / Sign up

Export Citation Format

Share Document