Long-term stability of guided wave structural health monitoring using distributed adhesively bonded piezoelectric transducers

2014 ◽  
Vol 13 (3) ◽  
pp. 265-280 ◽  
Author(s):  
Vatche A Attarian ◽  
Frederic B Cegla ◽  
Peter Cawley
2020 ◽  
pp. 147592172094493
Author(s):  
Parry Carrison ◽  
Hussain Altammar ◽  
Nathan Salowitz

Structural health monitoring of thin plate and beam structures using ultrasonic guided wave techniques has been widely studied and demonstrated advanced capabilities dependent on detailed analysis of specific guided wave modes. A common setup employs the d31 electromechanical coupling of piezoelectric wafer active sensors mounted on the surface of a beam or plate. Analysis of output signals from these basic systems is complicated because they represent multiple superposed ultrasonic wave modes that propagate at different velocities, are dispersive, and undergo reflection, refraction, and mode conversion. Multiple techniques have been pursued to overcome this complication. This article presents recent research into the use of shear-deforming lead zirconate titanate piezoelectric transducers, employing the d15 electromechanical coupling property, embedded within beam-like structures to selectively actuate and sense specific ultrasonic wave modes. The internally located transducers actuated and sensed transverse shear, coupled to bending and antisymmetric waves. A combination of results from finite element simulations and experiments found that d15 transducers located at the neutral axis of a beam exclusively coupled to antisymmetric wave modes and did neither directly actuate nor sense symmetric wave modes. Further study was performed to evaluate the effects of off-neutral-axis location on the mode selectivity and found that off axis location of the d15 transducer did not diminish the coupling to antisymmetric wave modes, but introduced coupling to symmetric wave modes. Additional study was performed to assess the ability of structural health monitoring systems employing shear-deforming d15 lead zirconate titanates located at the neutral axis to detect common forms of damage in laminate structures. The combination of selective actuation and selective sensing provides a powerful tool for signal analysis in ultrasonic structural health monitoring of thin plates and beams.


2013 ◽  
Vol 558 ◽  
pp. 374-385
Author(s):  
George Jung ◽  
Stephen van der Velden ◽  
Kelly Tsoi ◽  
Nik Rajic

With any structural health monitoring (SHM) system, verification of the health of the sensing elements is essential in ensuring confidence in the measurements furnished by the system. In particular, SHM systems utilised for structural hot spot monitoring applications will conceivably require transducers to operate reliably after sustained exposure to severe mechanical loading. Consequently, a good understanding of the long term mechanical durability performance of structurally integrated piezoelectric transducers is vital when designing and implementing robust SHM systems. An experimental facility has been developed at the Australian Defence Science and Technology Organisation (DSTO) capable of performing an autonomous long-term mechanical durability test on piezoceramic transducers. The Autonomous Mechanical Durability Experimentation and Analysis System (AMeDEAS) incorporates a general purpose data acquisition program controlling up to three 8-channel relay multiplexers and two instruments. AMeDEAS is highly flexible, allowing user-specified channel configurations and automatic interrogation of selected instruments. The system also interfaces with the uni-axial mechanical testing machine to provide control of the load sequence allowing transducer elements to be interrogated under stable load-free conditions after being subject to a predefined loading regime. AMeDEAS was used to investigate the fatigue characteristics of a low-profile layered piezoceramic transducer package developed by DSTO. A total of 16 transducers were tested under tension-dominated cyclic loading with peak-to-peak strain amplitude increasing from 400 με to a maximum of 3000 με, with periodic acoustic transduction efficiency and electromechanical impedance measurements taken throughout the test. This paper details the AMeDEAS and includes preliminary results which confirm the efficacy of the new facility.


Author(s):  
Robert I. Ponder ◽  
Mohsen Safaei ◽  
Steven R. Anton

Total Knee Replacement (TKR) is an important and in-demand procedure for the aging population of the United States. In recent decades, the number of TKR procedures performed has shown an increase. This pattern is expected to continue in the coming decades. Despite medical advances in orthopedic surgery, a high number of patients, approximately 20%, are dissatisfied with their procedure outcomes. Common causes that are suggested for this dissatisfaction include loosening of the implant components as well as infection. To eliminate loosening as a cause, it is necessary to determine the state of the implant both intra- and post-operatively. Previous research has focused on passively sensing the compartmental loads between the femoral and tibial components. Common methods include using strain gauges or even piezoelectric transducers to measure force. An alternative to this is to perform real-time structural health monitoring (SHM) of the implant to determine changes in the state of the system. A commonly investigated method of SHM, referred to as the electromechanical impedance (EMI) method, involves using the coupled electromechanical properties of piezoelectric transducers to measure the host structure’s condition. The EMI method has already shown promise in aerospace and infrastructure applications, but has seen limited testing for use in the biomechanical field. This work is intended to validate the EMI method for use in detecting damage in cemented bone-implant interfaces, with TKR being used as a case study to specify certain experimental parameters. An experimental setup which represents the various material layers found in a bone-implant interface is created with various damage conditions to determine the ability for a piezoelectric sensor to detect and quantify the change in material state. The objective of this work is to provide validation as well as a foundation on which additional work in SHM of orthopedic implants and structures can be performed.


Sign in / Sign up

Export Citation Format

Share Document