Validation of Impedance-Based Structural Health Monitoring in a Simulated Biomedical Implant System

Author(s):  
Robert I. Ponder ◽  
Mohsen Safaei ◽  
Steven R. Anton

Total Knee Replacement (TKR) is an important and in-demand procedure for the aging population of the United States. In recent decades, the number of TKR procedures performed has shown an increase. This pattern is expected to continue in the coming decades. Despite medical advances in orthopedic surgery, a high number of patients, approximately 20%, are dissatisfied with their procedure outcomes. Common causes that are suggested for this dissatisfaction include loosening of the implant components as well as infection. To eliminate loosening as a cause, it is necessary to determine the state of the implant both intra- and post-operatively. Previous research has focused on passively sensing the compartmental loads between the femoral and tibial components. Common methods include using strain gauges or even piezoelectric transducers to measure force. An alternative to this is to perform real-time structural health monitoring (SHM) of the implant to determine changes in the state of the system. A commonly investigated method of SHM, referred to as the electromechanical impedance (EMI) method, involves using the coupled electromechanical properties of piezoelectric transducers to measure the host structure’s condition. The EMI method has already shown promise in aerospace and infrastructure applications, but has seen limited testing for use in the biomechanical field. This work is intended to validate the EMI method for use in detecting damage in cemented bone-implant interfaces, with TKR being used as a case study to specify certain experimental parameters. An experimental setup which represents the various material layers found in a bone-implant interface is created with various damage conditions to determine the ability for a piezoelectric sensor to detect and quantify the change in material state. The objective of this work is to provide validation as well as a foundation on which additional work in SHM of orthopedic implants and structures can be performed.

2018 ◽  
Vol 29 (9) ◽  
pp. 1799-1817 ◽  
Author(s):  
Hamidreza Hoshyarmanesh ◽  
Ali Abbasi

Structural health monitoring of rotary aerospace structures is investigated in this research. A monitoring system is proposed based on the electromechanical impedance spectrum of piezoelectric transducers and a portable transceiver. To investigate the applicability and preliminary results of this method, a turbomachine prototype (laboratory device) is developed, and integrated composite piezoelectric films are deposited on the blades. Next, a self-diagnostic characterization is initially implemented to the piezo-films. Transceiver functionality and accuracy is verified using an Ivium impedance analyzer. The verified measuring path was used in structural health monitoring of pristine and damaged blades at rotational speed of 0 and 1000 r/min. The effects of damage formation and rotational speed on the impedance signature are discussed based on the variations in mechanical impedance using a two-dimensional model. Once damage occurs in a blade at each speed, it results in a frequency shift of the impedance signature at antiresonance peaks compared to the corresponding baseline. The results show a clear frequency shift of existing peaks and the appearance of new peaks as damage grows to a secure minimal detectable size. This achievement confirms the applicability of this method for incipient damage detection on rotary structures prior to any failure.


2013 ◽  
Vol 558 ◽  
pp. 374-385
Author(s):  
George Jung ◽  
Stephen van der Velden ◽  
Kelly Tsoi ◽  
Nik Rajic

With any structural health monitoring (SHM) system, verification of the health of the sensing elements is essential in ensuring confidence in the measurements furnished by the system. In particular, SHM systems utilised for structural hot spot monitoring applications will conceivably require transducers to operate reliably after sustained exposure to severe mechanical loading. Consequently, a good understanding of the long term mechanical durability performance of structurally integrated piezoelectric transducers is vital when designing and implementing robust SHM systems. An experimental facility has been developed at the Australian Defence Science and Technology Organisation (DSTO) capable of performing an autonomous long-term mechanical durability test on piezoceramic transducers. The Autonomous Mechanical Durability Experimentation and Analysis System (AMeDEAS) incorporates a general purpose data acquisition program controlling up to three 8-channel relay multiplexers and two instruments. AMeDEAS is highly flexible, allowing user-specified channel configurations and automatic interrogation of selected instruments. The system also interfaces with the uni-axial mechanical testing machine to provide control of the load sequence allowing transducer elements to be interrogated under stable load-free conditions after being subject to a predefined loading regime. AMeDEAS was used to investigate the fatigue characteristics of a low-profile layered piezoceramic transducer package developed by DSTO. A total of 16 transducers were tested under tension-dominated cyclic loading with peak-to-peak strain amplitude increasing from 400 με to a maximum of 3000 με, with periodic acoustic transduction efficiency and electromechanical impedance measurements taken throughout the test. This paper details the AMeDEAS and includes preliminary results which confirm the efficacy of the new facility.


2021 ◽  
pp. 136943322110384
Author(s):  
Xingyu Fan ◽  
Jun Li ◽  
Hong Hao

Vibration based structural health monitoring methods are usually dependent on the first several orders of modal information, such as natural frequencies, mode shapes and the related derived features. These information are usually in a low frequency range. These global vibration characteristics may not be sufficiently sensitive to minor structural damage. The alternative non-destructive testing method using piezoelectric transducers, called as electromechanical impedance (EMI) technique, has been developed for more than two decades. Numerous studies on the EMI based structural health monitoring have been carried out based on representing impedance signatures in frequency domain by statistical indicators, which can be used for damage detection. On the other hand, damage quantification and localization remain a great challenge for EMI based methods. Physics-based EMI methods have been developed for quantifying the structural damage, by using the impedance responses and an accurate numerical model. This article provides a comprehensive review of the exciting researches and sorts out these approaches into two categories: data-driven based and physics-based EMI techniques. The merits and limitations of these methods are discussed. In addition, practical issues and research gaps for EMI based structural health monitoring methods are summarized.


Author(s):  
Howard A. Winston ◽  
Fanping Sun ◽  
Balkrishna S. Annigeri

A technology for non-intrusive real-time structural health monitoring using piezoelectric active sensors is presented. The approach is based on monitoring variations of the coupled electromechanical impedance of piezoelectric patches bonded to metallic structures in high-frequency bands. In each of these applications, a single piezoelectric element is used as both an actuator and a sensor. The resulting electromechanical coupling makes the frequency-dependent electric impedance spectrum of the PZT sensor a good mapping of the underlying structure’s acoustic signature. Moreover, incipient structural damage can be indicated by deviations of this signature from its original baseline pattern. Unique features of this technology include its high sensitivity to structural damage, non-intrusiveness to the host structure, and low cost of implementation. These features have potential for enabling on-board damage monitoring of critical or inaccessible aerospace structures and components, such as aircraft wing joints, and both internal and external jet engine components. Several exploratory applications will be discussed.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2955 ◽  
Author(s):  
Mario de Oliveira ◽  
Andre Monteiro ◽  
Jozue Vieira Filho

Preliminaries convolutional neural network (CNN) applications have recently emerged in structural health monitoring (SHM) systems focusing mostly on vibration analysis. However, the SHM literature shows clearly that there is a lack of application regarding the combination of PZT-(lead zirconate titanate) based method and CNN. Likewise, applications using CNN along with the electromechanical impedance (EMI) technique applied to SHM systems are rare. To encourage this combination, an innovative SHM solution through the combination of the EMI-PZT and CNN is presented here. To accomplish this, the EMI signature is split into several parts followed by computing the Euclidean distances among them to form a RGB (red, green and blue) frame. As a result, we introduce a dataset formed from the EMI-PZT signals of 720 frames, encompassing a total of four types of structural conditions for each PZT. In a case study, the CNN-based method was experimentally evaluated using three PZTs glued onto an aluminum plate. The results reveal an effective pattern classification; yielding a 100% hit rate which outperforms other SHM approaches. Furthermore, the method needs only a small dataset for training the CNN, providing several advantages for industrial applications.


2020 ◽  
pp. 147592172091712 ◽  
Author(s):  
Bárbara M Gianesini ◽  
Nicolás E Cortez ◽  
Rothschild A Antunes ◽  
Jozue Vieira Filho

Structural health monitoring systems are employed to evaluate the state of structures to detect damage, bringing economical and safety benefits. The electromechanical impedance technique is a promising damage detection tool since it evaluates structural integrity by only measuring the electrical impedance of piezoelectric transducers bonded to structures. However, in real-world applications, impedance-based damage detection systems exhibit strong temperature dependence; therefore, variations associated with temperature changes may be confused as damage. In this article, the temperature effect on the electrical impedance of piezoelectric ceramics attached to structures is analyzed. Besides, a new methodology to compensate for the temperature effect in the electromechanical impedance technique is proposed. The method is very general since it can be applied to nonlinear (polynomial) temperature and/or frequency dependences observed on the horizontal and vertical shifts of the impedance signatures. A computer algorithm that performs the compensation was developed, which can be easily incorporated into real-time damage detection systems. This compensation technique is applied successfully to two aluminum beams and one steel pipe, minimizing the effect of temperature variations on damage detection structural health monitoring systems in the temperature range from −40°C to 80°C and the frequency range from 10 to 90 kHz.


Sign in / Sign up

Export Citation Format

Share Document