scholarly journals Statistical guided-waves-based structural health monitoring via stochastic non-parametric time series models

2021 ◽  
pp. 147592172110245
Author(s):  
Ahmad Amer ◽  
Fotis P Kopsaftopoulos

Damage detection in active-sensing, guided-waves-based structural health monitoring (SHM) has evolved through multiple eras of development during the past decades. Nevertheless, there still exist a number of challenges facing the current state-of-the-art approaches, both in the industry as well as in research and development, including low damage sensitivity, lack of robustness to uncertainties, need for user-defined thresholds, and non-uniform response across a sensor network. In this work, a novel statistical framework is proposed for active-sensing SHM based on the use of ultrasonic guided waves. This framework is based on stochastic non-parametric time series models and their corresponding statistical properties in order to readily provide healthy confidence bounds and enable accurate and robust damage detection via the use of appropriate statistical decision-making tests. Three such methods and corresponding statistical quantities (test statistics) along with decision-making schemes are formulated and experimentally assessed via the use of three coupons with different levels of complexity: an Al plate with a growing notch, a carbon fiber-reinforced plastic (CFRP) plate with added weights to simulate local damage, and the CFRP panel used in the Open Guided Waves project, all fitted with piezoelectric transducers under a pitch-catch configuration. The performance of the proposed methods is compared to that of state-of-the-art time-domain damage indices (DIs). The results demonstrate the increased detection sensitivity and robustness of the proposed methods, with better tracking capability of damage evolution compared to conventional approaches, even for damage-non-intersecting actuator–sensor paths. In particular, the Z statistic emerges as the best damage detection metric compared to conventional DIs, as well as the other proposed statistics. Overall, the proposed statistics in this study promise greater damage sensitivity across different components, with enhanced robustness to uncertainties, as well as user-friendly application.

2019 ◽  
Vol 30 (18-19) ◽  
pp. 2919-2931 ◽  
Author(s):  
Ali Nokhbatolfoghahai ◽  
Hossein M Navazi ◽  
Roger M Groves

To perform active structural health monitoring, guided Lamb waves for damage detection have recently gained extensive attention. Many algorithms are used for damage detection with guided waves and among them, the delay-and-sum method is the most commonly used algorithm because of its robustness and simplicity. However, delay-and-sum images tend to have poor accuracy with a large spot size and a high noise floor, especially in the presence of multiple damages. To overcome these problems, another method that is based on sparse reconstruction can be used. Although the images produced by the sparse reconstruction method are superior to the conventional delay-and-sum method, it has the challenges of the time and cost of computations in comparison with the delay-and-sum method. Also, in some cases in multi-damage detection, the sparse reconstruction method totally fails. In this article, using prior support information of the structure achieved by the delay-and-sum method, a hybrid method based on sparse reconstruction method is proposed to improve the computational performance and robustness of sparse reconstruction method in the case of multi-damage presence. The effectiveness of the proposed method in detecting damages is demonstrated experimentally and numerically on a simple aluminum plate. The technique is also shown to accurately identify and localize multi-site damages as well as single damage with low sampled signals.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Eloi Figueiredo ◽  
Gyuhae Park ◽  
Kevin M. Farinholt ◽  
Charles R. Farrar ◽  
Jung-Ryul Lee

In this paper, time domain data from piezoelectric active-sensing techniques is utilized for structural health monitoring (SHM) applications. Piezoelectric transducers have been increasingly used in SHM because of their proven advantages. Especially, their ability to provide known repeatable inputs for active-sensing approaches to SHM makes the development of SHM signal processing algorithms more efficient and less susceptible to operational and environmental variability. However, to date, most of these techniques have been based on frequency domain analysis, such as impedance-based or high-frequency response functions-based SHM techniques. Even with Lamb wave propagations, most researchers adopt frequency domain or other analysis for damage-sensitive feature extraction. Therefore, this study investigates the use of a time-series predictive model which utilizes the data obtained from piezoelectric active-sensors. In particular, time series autoregressive models with exogenous inputs are implemented in order to extract damage-sensitive features from the measurements made by piezoelectric active-sensors. The test structure considered in this study is a composite plate, where several damage conditions were artificially imposed. The performance of this approach is compared to that of analysis based on frequency response functions and its capability for SHM is demonstrated.


2016 ◽  
Vol 28 (9) ◽  
pp. 1160-1174 ◽  
Author(s):  
Mario A de Oliveira ◽  
Jozue Vieira Filho ◽  
Vicente Lopes ◽  
Daniel J Inman

This article presents a novel approach for damage detection applied to structural health monitoring systems exploring the residues obtained from singular spectrum analysis. In this technique, a lead zirconate titanate patch acting as actuator excites the structure, and three other patches are used as sensors to receive the structural responses. This method is based on a high-frequency excitation range in order to overcome the problem caused when the low-vibration modes are excited. In this method, a wideband chirp signal, with low amplitude and variable frequency, is used to excite the structure. The response signals are acquired in the time domain, and the singular spectrum analysis procedure is performed. The residues obtained between the reconstructed and original time series are used to compute statistical metrics. The residues calculated from singular spectrum analysis are used to compute the root mean square deviation and correlation coefficient deviation metric indices, rendering the damage detection approach more reliable. Tests were carried out on an aluminum plate, and the results have demonstrated the effectiveness of the proposed method making it an excellent approach for structural health monitoring applications. The results exploring different numbers of components used during the reconstruction process of time series are obtained, and the highlights are presented.


2021 ◽  
Vol 16 (59) ◽  
pp. 461-470
Author(s):  
Thanh Bui-Tien ◽  
Dung Bui-Ngoc ◽  
Hieu Nguyen-Tran ◽  
Lan Nguyen-Ngoc ◽  
Hoa Tran-Ngoc ◽  
...  

The process of damage identification in Structural Health Monitoring (SHM) gives us a lot of practical information about the current status of the inspected structure. The target of the process is to detect damage status by processing data collected from sensors, followed by identifying the difference between the damaged and the undamaged states. Different machine learning techniques have been applied to attempt to extract features or knowledge from vibration data, however, they need to learn prior knowledge about the factors affecting the structure. In this paper, a novel method of structural damage detection is proposed using convolution neural network and recurrent neural network. A convolution neural network is used to extract deep features while recurrent neural network is trained to learn the long-term historical dependency in time series data. This method with combining two types of features increases discrimination ability when compares with it to deep features only. Finally, the neural network is applied to categorize the time series into two states - undamaged and damaged. The accuracy of the proposed method was tested on a benchmark dataset of Z24-bridge (Switzerland). The result shows that the hybrid method provides a high level of accuracy in damage identification of the tested structure.


2019 ◽  
Vol 55 (7) ◽  
pp. 1-6
Author(s):  
Zhaoyuan Leong ◽  
William Holmes ◽  
James Clarke ◽  
Akshay Padki ◽  
Simon Hayes ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2778 ◽  
Author(s):  
Mohsen Azimi ◽  
Armin Eslamlou ◽  
Gokhan Pekcan

Data-driven methods in structural health monitoring (SHM) is gaining popularity due to recent technological advancements in sensors, as well as high-speed internet and cloud-based computation. Since the introduction of deep learning (DL) in civil engineering, particularly in SHM, this emerging and promising tool has attracted significant attention among researchers. The main goal of this paper is to review the latest publications in SHM using emerging DL-based methods and provide readers with an overall understanding of various SHM applications. After a brief introduction, an overview of various DL methods (e.g., deep neural networks, transfer learning, etc.) is presented. The procedure and application of vibration-based, vision-based monitoring, along with some of the recent technologies used for SHM, such as sensors, unmanned aerial vehicles (UAVs), etc. are discussed. The review concludes with prospects and potential limitations of DL-based methods in SHM applications.


Author(s):  
Wiesław J Staszewski ◽  
Amy N Robertson

Signal processing is one of the most important elements of structural health monitoring. This paper documents applications of time-variant analysis for damage detection. Two main approaches, the time–frequency and the time–scale analyses are discussed. The discussion is illustrated by application examples relevant to damage detection.


Sign in / Sign up

Export Citation Format

Share Document