Damage detection and characterization of a scaled model steel truss bridge using combined complete ensemble empirical mode decomposition with adaptive noise and multiple signal classification approach

2021 ◽  
pp. 147592172110459
Author(s):  
Asma A Mousavi ◽  
Chunwei Zhang ◽  
Sami F Masri ◽  
Gholamreza Gholipour

This study aims to investigate the performance of a new damage detection method proposed based on the combination of two signal processing techniques which are complete ensemble empirical mode decomposition with adaptive noise and multiple signal classification (CEEMDAN-MUSIC). The proposed damage detection approach begins with determining the power density spectrum, namely, the pseudospectrum, from the acceleration response of a structure. Then, the CEEMDAN algorithm is used to decompose the vibration signal into a set of intrinsic mode functions (IMFs). Furthermore, the MUSIC algorithm is applied to the first IMF of the processed signal to determine the frequency pseudospectrum, prior to and post the damage states of the structure. The effectiveness of the proposed methodology is experimentally validated using a laboratory-scale model of a steel truss bridge exposed to a white noise excitation. The damage states of the truss bridge are implemented by replacing a specified diagonal element with reduced cross-sectional stiffness. The experimental results demonstrate the superiority of the CEEMDAN-MUSIC method in comparison with the performance of pure MUSIC and traditional frequency domain techniques. The advantages of the proposed technique are also discussed in terms of identifying the presence of the damage, addressing its location, and quantifying the damage levels which are summarized as the damage detection and characterization.

2021 ◽  
pp. 147592172110135
Author(s):  
Asma Alsadat Mousavi ◽  
Chunwei Zhang ◽  
Sami F Masri ◽  
Gholamreza Gholipour

Signal processing is one of the essential components in vibration-based approaches and damage detection for structural health monitoring. Since signals in the real world are often nonlinear and non-stationary, especially in extended and complex structures, such as bridges, the Hilbert–Huang transform is used for damage assessment. In recent years, the empirical mode decomposition technique has been gradually used in structural health monitoring and damage detection. In this article, the application of complete ensemble empirical mode decomposition with adaptive noise technique is investigated to identify the presence, location, and severity of damage on a steel truss bridge model. The target is built at laboratory conditions and experimentally subjected to white noise excitations. By employing complete ensemble empirical mode decomposition with adaptive noise technique, four key features extracted from the intrinsic mode functions, including energy, instantaneous amplitude, unwrapped phase, and instantaneous frequency, are assessed to localization, quantification, and detection of damage both quantitatively and qualitatively. In addition, to further explore the sensitivity of the damage detection approach based on the complete ensemble empirical mode decomposition with adaptive noise technique method, several improved damage indices are proposed based on the combinations of two statistical time-history features, including kurtosis and entropy features with the energy and instantaneous amplitude features of the analyzed signal. The experimental results from the damage indices based on the extracted features demonstrate the robustness, superiority, and more sensitivity of the complete ensemble empirical mode decomposition with adaptive noise technique method in addressing the damage location, classifying the severity, and detecting the damage compared to empirical mode decomposition and ensemble empirical mode decomposition techniques.


2018 ◽  
Vol 8 (9) ◽  
pp. 1447 ◽  
Author(s):  
Yongteng Zhong ◽  
Jiawei Xiang ◽  
Xiaoyu Chen ◽  
Yongying Jiang ◽  
Jihong Pang

Multiple signal classification (MUSIC) algorithm-based structural health monitoring technology is a promising method because of its directional scanning ability and easy arrangement of the sensor array. However, in previous MUSIC-based impact location methods, the narrowband signals at a particular central frequency had to be extracted from the wideband Lamb waves induced by each impact using a wavelet transform. Additionally, the specific center frequency had to be obtained after carefully analyzing the impact signal, which is time consuming. Aiming at solving this problem, this paper presents an improved approach that combines the optimized ensemble empirical mode decomposition (EEMD) and two-dimensional multiple signal classification (2D-MUSIC) algorithm for real-time impact localization on composite structures. Firstly, the impact signal at an unknown position is obtained using a unified linear sensor array. Secondly, the fast Hilbert Huang transform (HHT) with an optimized EEMD algorithm is introduced to extract intrinsic mode functions (IMFs) from impact signals. Then, all IMFs in the whole frequency domain are directly used as the input vector of the 2D-MUSIC model separately to locate the impact source. Experimental data collected from a cross-ply glass fiber reinforced composite plate are used to validate the proposed approach. The results show that the use of optimized EEMD and 2D-MUSIC is suitable for real-time impact localization of composite structures.


Sign in / Sign up

Export Citation Format

Share Document