Impact of light spectrum and photosynthetic photon flux density on the germination and seedling emergence of Okra

2019 ◽  
Vol 52 (5) ◽  
pp. 595-606
Author(s):  
BF Degni ◽  
CT Haba ◽  
WG Dibi ◽  
YA Gbogbo ◽  
NU Niangoran

Light's impact on many crop species and vegetables has been deeply studied in recent years but there are still some economic and technical issues to overcome. Thus, the impact of light spectrum and photosynthetic photon flux density from light-emitting diodes on the germination and seedling emergence of Okra has been investigated in this study. Different light treatments have been applied to Okra seeds using a factorial design of three levels of light spectrum and three levels of photosynthetic photon flux density; these three levels of light spectrum are defined by their peak wavelengths at 635 nm (R635), 457 nm (B457) and 521 nm (G521) and are, respectively, in the red, blue and green region of the visible spectrum; levels of photosynthetic photon flux density are 100 µmol m−2 s−1, 200 µmol m−2 s−1 and 300 µmol m−2 s−1. Results show significant interactions between light spectrum and photosynthetic photon flux density on mean germination time, mean germination rate, uncertainty of germination and seedling emergence height. R635 shows a better mean germination rate and less uncertainty and dispersion than B457 and G521. Seedlings that emerged under photosynthetic photon flux density of 300 µmol m−2 s−1 are significantly shorter than those that emerged under 100 µmol m−2 s−1 and 200 µmol m−2 s−1.

2019 ◽  
Vol 11 (8) ◽  
pp. 932
Author(s):  
Megumi Yamashita ◽  
Mitsunori Yoshimura

A knowledge of photosynthetic photon flux density (PPFD: μmol m−2 s−1) is crucial for understanding plant physiological processes in photosynthesis. The diffuse component of the global PPFD on a short timescale is required for the accurate modeling of photosynthesis. However, because the PPFD is difficult to determine, it is generally estimated from incident solar radiation (SR: W m−2), which is routinely observed worldwide. To estimate the PPFD from the SR, photosynthetically active radiation (PAR: W m−2) is separated from the SR using the PAR fraction (PF; PAR/SR: unitless), and the PAR is then converted into the PPFD using the quanta-to-energy ratio (Q/E: μmol J−1). In this procedure, PF and Q/E are considered constant values; however, it was reported recently that PF and Q/E vary under different sky conditions. Moreover, the diffuse ratio (DR) is needed to distinguish the diffuse component in the global PAR, and it is known that the DR varies depending on sky conditions. Ground-based whole-sky images can be used for sky-condition monitoring, instead of human-eye interpretation. This study developed a methodology for estimating the global and diffuse PPFD using whole-sky images. Sky-condition factors were derived through whole-sky image processing, and the effects of these factors on the PF, the Q/E of global and diffuse PAR, and the DR were examined. We estimated the global and diffuse PPFD with instantaneous values using the sky-condition factors under various sky conditions, based on which the detailed effects of the sky-condition factors on PF, Q/E, and DR were clarified. The results of the PPFD estimations had small bias errors of approximately +0.3% and +3.8% and relative root mean square errors of approximately 27% and 20% for the global and diffuse PPFD, respectively.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Neringa Rasiukevičiūtė ◽  
Aušra Brazaitytė ◽  
Viktorija Vaštakaitė-Kairienė ◽  
Alma Valiuškaitė

The study aimed to evaluate the effect of different photon flux density (PFD) and light-emitting diodes (LED) wavelengths on strawberry Colletotrichum acutatum growth characteristics. The C. acutatum growth characteristics under the blue 450 nm (B), green 530 nm (G), red 660 nm (R), far-red 735 nm (FR), and white 5700 K (W) LEDs at PFD 50, 100 and 200 μmol m−2 s−1 were evaluated. The effect on C. acutatum mycelial growth evaluated by daily measuring until five days after inoculation (DAI). The presence of conidia and size (width and length) evaluated after 5 DAI. The results showed that the highest inhibition of fungus growth was achieved after 1 DAI under B and G at 50 μmol m−2 s−1 PFD. Additionally, after 1–4 DAI under B at 200 μmol m−2 s−1 PFD. The lowest conidia width was under FR at 50 μmol m−2 s−1 PFD and length under FR at 100 μmol m−2 s−1 PFD. Various LED light wavelengths influenced differences in C. acutatum colonies color. In conclusion, different photosynthetic photon flux densities and wavelengths influence C. acutatum growth characteristics. The changes in C. acutatum morphological and phenotypical characteristics could be related to its ability to spread and infect plant tissues. This study’s findings could potentially help to manage C. acutatum by LEDs in controlled environment conditions.


2019 ◽  
Vol 52 (5) ◽  
pp. 583-594
Author(s):  
T Han ◽  
T Astafurova ◽  
S Turanov ◽  
A Burenina ◽  
A Butenkova ◽  
...  

Definition of the growth and development characteristics of plants in varied light conditions is a key factor for the creation of highly efficient light facilities for plant cultivation. Experimental research was conducted using an LED irradiation facility with photosynthetic photon flux densities ranging from 0 to 261 μmol m−2 s−1 and a continuous spectrum with maxima at 445 and 600 nm. Under the maximum photosynthetic photon flux density (261 μmol m− 2 s−1) wheat germs demonstrated diminishing leaf surface with high values of specific leaf area, enhanced pubescence of ground tissues, increases in the number of stomata on the upper epidermis and palisade, and an increase in the thickness of the leaves as well as an increase in carotenoids but a decrease in the chlorophyll a+b/carotenoids relation. It was revealed that the optimum level of photosynthetic photon flux density for the referred spectrum was in the range from 82 to 100 µmol m−2 s−1, which may enable a reduction of irradiance under specific conditions during early development with no harm to the plants while minimizing energy consumption during cultivation.


Sign in / Sign up

Export Citation Format

Share Document