scholarly journals Silencing p53 inhibits interleukin 10-induced activated hepatic stellate cell senescence and fibrotic degradation in vivo

2020 ◽  
pp. 153537022096039
Author(s):  
Qilan Guo ◽  
Minghua Chen ◽  
Qingduo Chen ◽  
Guitao Xiao ◽  
Zhixin Chen ◽  
...  

Activated hepatic stellate cells are reported to play a significant role in liver fibrogenesis. Beside the phenotype reversion and apoptosis of activated hepatic stellate cells, the senescence of activated hepatic stellate cells limits liver fibrosis. Our previous researches have demonstrated that interleukin-10 could promote hepatic stellate cells senescence via p53 signaling pathway in vitro. However, the relationship between expression of p53 and senescence of activated hepatic stellate cells induced by interleukin-10 in fibrotic liver is unclear. The purpose of present study was to explore whether p53 plays a crucial role in the senescence of activated hepatic stellate cells and degradation of collagen mediated by interleukin-10. Hepatic fibrosis animal model was induced by carbon tetrachloride through intraperitoneal injection and transfection of interleukin-10 gene to liver was performed by hydrodynamic-based transfer system. Depletions of p53 in vivo and in vitro were carried out by adenovirus-based short hairpin RNA against p53. Regression of fibrosis was assessed by liver biopsy and collagen staining. Cellular senescence in the liver was observed by senescence-associated beta-galactosidase (SA-β-Gal) staining. Immunohistochemistry, immunofluorescence double staining, and Western blot analysis were used to evaluate the senescent cell and senescence-related protein expression. Our data showed that interleukin-10 gene treatment could lighten hepatic fibrosis induced by carbon tetrachloride and induce the aging of activated hepatic stellate cells accompanied by up-regulating the expression of aging-related proteins. We further demonstrated that depletion of p53 could abrogate up-regulation of interleukin-10 on the expression of senescence-related protein in vivo and vitro. Moreover, p53 knockout in fibrotic mice could block not only the senescence of activated hepatic stellate cells, but also the degradation of fibrosis induced by interleukin-10 gene intervention. Taken together, our results suggested that interleukin-10 gene treatment could attenuate carbon tetrachloride-induced hepatic fibrosis by inducing senescence of activated hepatic stellate cells in vivo, and this induction was closely related to p53 signaling pathway. Impact statement This work further expanded the knowledge of the molecular mechanisms underlying IL-10 anti-fibrogenic effect by exploring the function of p53 in IL-10-induced activated HSCs senescence and fibrotic degradation in vivo. Our data showed that IL-10 gene intervention could lighten hepatic fibrosis induced by CCL4 and induce the senescence of activated HSCs accompanied by up-regulating the expression of senescence-related proteins. In addition, depletion of p53 could abrogate up-regulation of IL-10 on the expression of aging-related proteins in vivo and vitro. Moreover, p53 knockout in fibrotic mice could block the senescence of activated HSCs and the degradation of fibrosis induced by IL-10 gene treatment. In summary, our results suggested that IL-10 gene intervention could attenuate CCL4-induced hepatic fibrosis by inducing senescence of activated HSCs in vivo, and this induction was closely related to p53 signaling pathway. Our study sheds important light into the anti-fibrogenic therapy of IL-10.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yang Hu ◽  
Nian Fu ◽  
Li Xian Chen ◽  
Jian Hua Xiao ◽  
Xue Feng Yang

Cyclooxygenase-2 (COX-2) is an important rate-limiting enzyme in the synthesis of prostaglandins (PGs), which can be upregulated by various stimuli. COX-2 has been shown to be involved in the occurrence and development of hepatic fibrosis by regulating the proliferation and apoptosis of hepatic stellate cells (HSCs) in previous studies. The aims of the study are to study the mechanism of how COX-2 regulates the proliferation and apoptosis of HSCs and to provide new targets for the prevention and treatment of hepatic fibrosis. A short hairpin RNA targeting COX-2 was constructed, and the changes in proliferation and apoptosis of liver tissue cells and HSCs were observed, respectively. COX-2-shRNA-1 significantly suppressed the proliferation of HSCs in vivo. Moreover, knockdown of COX-2 significantly suppressed cell proliferation and accelerated cell cycle arrest and apoptosis in vitro. Among those differential genes related to cell proliferation and apoptosis, CDC27 and Sh3kbp1 were upregulated, but Plcd4 was suppressed. Mechanistically, the influence of COX-2 on HSCs partly depends on upregulating CDC27. Our results demonstrated that COX-2 regulates the proliferation and apoptosis of activated hepatic stellate cells through the CDC27 pathway. This study contributes to our understanding of the effect of COX-2 for the treatment of hepatic fibrosis.


2014 ◽  
Vol 28 (12) ◽  
pp. 5172-5183 ◽  
Author(s):  
Pradeep Kumar ◽  
Tekla Smith ◽  
Khalidur Rahman ◽  
Jamie E. Mells ◽  
Natalie E. Thorn ◽  
...  

2008 ◽  
Vol 134 (4) ◽  
pp. A-795
Author(s):  
Erwin Gäbele ◽  
Matthias Froh ◽  
Reiner Wiest ◽  
Florian Obermeier ◽  
Jürgen Schölmerich ◽  
...  

2020 ◽  
Author(s):  
Ling Wu ◽  
Xiao-quan Huang ◽  
Na Li ◽  
Cao Xie ◽  
Sheng-xiang Rao ◽  
...  

Abstract Background: Activated hepatic stellate cells are the most critical cell responsible for liver fibrosis. In liver fibrogenesis, platelet-derived growth factor is the most prominent mitogen for hepatic stellate cells. This study aims to explore the potential of gadolinium (Gd)-labeled cyclic peptides (pPB) targeted to platelet-derived growth factor receptor-β (PDGFR-β) as a magnetic resonance imaging (MRI) radiotracer to identify the progress of liver fibrosis by imaging hepatic PDGFR-β expression. Results: Hepatic PDGFR-β expression level was found to be paralleled with the severity of liver fibrosis, which was increased with the progression of fibrosis and reduced with the regression. Majority of cells expressing PDGFR-β was determined to be activated hepatic stellate cells in fibrotic livers. Culture-activated human hepatic stellate cells expressed abundant PDGFR-β, and FITC-labeled pPB could bind to human hepatic stellate cells in a concentration and time dependent manner. With Gd-labeled pPB as a tracer, an MRI modality demonstrated that the relative hepatic T1-weighed MR signal value was increased progressively along with severity of hepatic fibrosis and reduced with the remission. Conclusion: Hepatic PDGFR-β expression reflects the progress of hepatic fibrosis, and MR imaging using Gd-labeled pPB as a tracer may distinguish different stages of liver fibrosis in mice.


2021 ◽  
Vol 22 (24) ◽  
pp. 13354
Author(s):  
Seita Kataoka ◽  
Atsushi Umemura ◽  
Keiichiro Okuda ◽  
Hiroyoshi Taketani ◽  
Yuya Seko ◽  
...  

Chronic liver injury may result in hepatic fibrosis, which can progress to cirrhosis and eventually liver failure. There are no drugs that are specifically approved for treating hepatic fibrosis. The natural product honokiol (HNK), a bioactive compound extracted from Magnolia grandiflora, represents a potential tool in the management of hepatic fibrosis. Though HNK has been reported to exhibit suppressive effects in a rat fibrosis model, the mechanisms accounting for this suppression remain unclear. In the present study, the anti-fibrotic effects of HNK on the liver were evaluated in vivo and in vitro. In vivo studies utilized a murine liver fibrosis model, in which fibrosis is induced by treatment with carbon tetrachloride (CCl4). For in vitro studies, LX-2 human hepatic stellate cells (HSCs) were treated with HNK, and expression of markers of fibrosis, cell viability, the transforming growth factor-β (TGF-β1)/SMAD signaling pathway, and autophagy were analyzed. HNK was well tolerated and significantly attenuated CCl4-induced liver fibrosis in vivo. Moreover, HNK decreased HSC activation and collagen expression by downregulating the TGF-β1/SMAD signaling pathway and autophagy. These results suggest that HNK is a new potential candidate for the treatment of hepatic fibrosis through suppressing both TGF-β1/SMAD signaling and autophagy in HSCs.


Molecules ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 2122-2134 ◽  
Author(s):  
Daya Parajuli ◽  
Eun-Jeon Park ◽  
Xian-Hua Che ◽  
Wen-Yi Jiang ◽  
Youn-Chul Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document