smad signaling pathway
Recently Published Documents


TOTAL DOCUMENTS

473
(FIVE YEARS 213)

H-INDEX

38
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Xuan Zhang ◽  
Tao Wu ◽  
Rong Ding ◽  
Rujia Qin ◽  
Yongchun Zhou ◽  
...  

Abstract Preceding studies have identified that noncoding RNA plays a significant role in the occurrence and development of tumors. Colorectal cancer (CRC) has attracted increasing attention due to its high incidence and mortality rate. Based on Cancer Genome Atlas (TCGA) database analysis, it was found that compared with normal tissues, HNF1A-AS1 and INHBA were highly expressed in CRC tissues; miR-214 was relatively low expressed, and it is predicted to specifically target the3' untranslated region (3'UTR region) of INHBA. Besides, the result was consistent with the quantitative reverse transcription PCR (RT-qPCR) verification results of 17 CRC cases and adjacent tissues collected clinically. Western Blot (WB) manifested that INHBA protein was highly expressed in CRC tissues, which was consistent with the results of CRC cell lines (HT29, SW480). Immunohistochemical (IHC) staining demonstrated that INHBA protein was brownish yellow, overwhelming majority of INHBA protein were located in the cytoplasm, and expression level was significantly higher than that in adjacent tissues. Based on previous studies, the biological process of INHBA-mediated TGF-β/Smad signaling pathway inducing the proliferation and invasion of CRC has been partially confirmed, but the upstream signaling molecules and mechanisms which regulating INHBA remain unclear. Herein, benefiting from bioinformatics, preliminary experimental results and previous research, they provide basis for the follow-up study on the regulation of HNF1A-AS1/miR-214/INHBA signal axis in CRC.


2021 ◽  
Author(s):  
Qian Li ◽  
Liyu Zhang ◽  
Yuxin Xu

Abstract Background: Treatment for glaucoma has traditionally been limited to reducing intraocular pressure (IOP). Inhibiting oxidative stress in the trabecular meshwork (TM) is regarded as a new treatment for glaucoma; however, the effects do not meet expectations. Exploring the mechanism by which oxidative stress and antioxidant stress occur in TM cells will offer clues to aid the development of new treatments.Methods and results: In our study, we cultured TM cells and used H2O2 and SOD to induce and inhibit oxidative stress, respectively. Label-free LC–MS/MS quantitative proteomic analysis was conducted to analyze the differentially expressed proteins and relevant signaling pathways. A total of 24 upregulated proteins and 18 downregulated proteins were identified under oxidative stress. PTGS2, TGFβr2 and ICAM-1 were the key proteins. The PTGS2/NF-ĸb pathway, TGF-β/Smad signaling pathway and AGE-RAGE signaling pathway in diabetic complications may be the major signaling pathways under conditions of ROS-induced damage in TM cells. Seventy-eight proteins were upregulated and 73 proteins were downregulated under antioxidant stress in TM cells. The key proteins included collagen family proteins, which were upregulated, and ICAM-1, which was downregulated. The ECM-receptor interaction pathway was the most important pathway under antioxidant stress.Conclusions: Key proteins and signaling pathways play important roles in the mechanisms of oxidative stress and antioxidant strategies in TM cells. ICAM-1 knockdown can suppress the apoptosis of TM cells induced by H2O2, which may reveal new therapeutic targets and biomarkers for glaucoma.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shen Li ◽  
Yongzhang Li ◽  
Xiaozhe Su ◽  
Aiyun Han ◽  
Yang Cui ◽  
...  

Although bone marrow mesenchymal stem cells (BMMSCs) are effective in treating chronic bacterial prostatitis (CBP), the homing of BMMSCs seems to require ultrasound induction. Dihydroartemisinin (DHA) is an important derivative of artemisinin (ART) and has been previously reported to alleviate inflammation and autoimmune diseases. But the effect of DHA on chronic prostatitis (CP) is still unclear. This study aims to clarify the efficacy and mechanism of DHA in the treatment of CBP and its effect on the accumulation of BMMSCs. The experimental CBP was produced in C57BL/6 male mice via intraurethrally administered E. coli solution. Results showed that DHA treatment concentration-dependently promoted the accumulation of BMMSCs in prostate tissue of CBP mice. In addition, DHA and BMMSCs cotreatment significantly alleviated inflammation and improved prostate damage by decreasing the expression of proinflammatory factors such as TNF-α, IL-1β, and chemokines CXCL2, CXCL9, CXCL10, and CXCL11 in prostate tissue of CBP mice. Moreover, DHA and BMMSCs cotreatment displayed antioxidation property by increasing the production of glutathione peroxidase (GSH-Px), SOD, and decreasing malondialdehyde (MDA) expression. Mechanically, DHA and BMMSCs cotreatment significantly inhibited the expression of TGFβ-RI, TGFβ-RII, phosphor (p)-Smad2/3, and Smad4 in a dose-dependent manner while stimulated Smad7 expression in the same manner. In conclusion, our findings provided evidence that DHA effectively eliminated inflammatory and oxidative stress against prostate injury, and this effect involved the TGF-β/Smad signaling pathway in CBP.


2021 ◽  
Vol 22 (24) ◽  
pp. 13354
Author(s):  
Seita Kataoka ◽  
Atsushi Umemura ◽  
Keiichiro Okuda ◽  
Hiroyoshi Taketani ◽  
Yuya Seko ◽  
...  

Chronic liver injury may result in hepatic fibrosis, which can progress to cirrhosis and eventually liver failure. There are no drugs that are specifically approved for treating hepatic fibrosis. The natural product honokiol (HNK), a bioactive compound extracted from Magnolia grandiflora, represents a potential tool in the management of hepatic fibrosis. Though HNK has been reported to exhibit suppressive effects in a rat fibrosis model, the mechanisms accounting for this suppression remain unclear. In the present study, the anti-fibrotic effects of HNK on the liver were evaluated in vivo and in vitro. In vivo studies utilized a murine liver fibrosis model, in which fibrosis is induced by treatment with carbon tetrachloride (CCl4). For in vitro studies, LX-2 human hepatic stellate cells (HSCs) were treated with HNK, and expression of markers of fibrosis, cell viability, the transforming growth factor-β (TGF-β1)/SMAD signaling pathway, and autophagy were analyzed. HNK was well tolerated and significantly attenuated CCl4-induced liver fibrosis in vivo. Moreover, HNK decreased HSC activation and collagen expression by downregulating the TGF-β1/SMAD signaling pathway and autophagy. These results suggest that HNK is a new potential candidate for the treatment of hepatic fibrosis through suppressing both TGF-β1/SMAD signaling and autophagy in HSCs.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Meng-Zhi Wu ◽  
Yi-chuan Yuan ◽  
Bi-Yu Huang ◽  
Jin-Xi Chen ◽  
Bin-Kui Li ◽  
...  

AbstractAberrant activation of the TGF-β/SMAD signaling pathway is often observed in hepatocellular carcinoma (HCC). Whether lncRNA regulates the TGF-β/SMAD signaling remains largely unknown. Here, we identified an oncogenic lncRNA that was upregulated in HCC and was transcriptionally induced by TGF-β (named lnc-UTGF, lncRNA upregulated by TGF-β). Upon TGF-β stimulation, SMAD2/3 bound to the lnc-UTGF promoter and activated lnc-UTGF expression. In turn, the TGF-β/SMAD signaling was augmented by overexpressing lnc-UTGF, but was inhibited by silencing lnc-UTGF. Mechanism investigations revealed that lnc-UTGF interacted with the mRNAs of SMAD2 and SMAD4 via complementary base-pairing, resulting in enhanced stability of SMAD2/4 mRNAs. These data suggest a novel TGF-β/SMAD/lnc-UTGF positive feedback circuitry. Subsequent gain- and loss-of-function analyses disclosed that lnc-UTGF promoted the migration and invasion of hepatoma cells, and this effect of lnc-UTGF was attenuated by repressing SMAD2/4 expression or by mutating the SMAD2/4-binding sites in lnc-UTGF. Studies using mouse models further confirmed that in vivo metastasis of hepatoma xenografts was inhibited by silencing lnc-UTGF, but was enhanced by ectopic expression of lnc-UTGF. The lnc-UTGF level was positively correlated with the SMAD2/4 levels in xenografts. Consistently, we detected an association of lnc-UTGF upregulation with increase of SMAD2, SMAD4, and their metastasis effector SNAIL1 in human HCC. And high lnc-UTGF level was also significantly associated with enhanced metastasis potential, advanced TNM stages, and worse recurrence-free survival. Conclusion: there exists a lnc-UTGF-mediated positive feedback loop of the TGF-β signaling and its deregulation promotes hepatoma metastasis. These findings may provide a new therapeutic target for HCC metastasis.


2021 ◽  
Author(s):  
Yiming Li ◽  
Yanjing Huang ◽  
Zhihong Lin ◽  
Xiaofeng Huang

Abstract Sepsis is a common cause of death among patients in intensive care unit. Recent evidence indicates that microRNAs (miRs) might serve as potential biomarkers facilitating an early diagnosis of sepsis. Herein, we aimed to examine the mechanisms by which miR-590-3p may regulate inflammatory response and organ dysfunction during sepsis progression. The Gene Expression Omnibus (GEO) database was used to identify differentially expressed genes in an established sepsis mouse model, and the related miRNAs and downstream regulatory pathways were predicted using web-available microarrays. A sepsis animal model was induced in mice by cecal ligation and puncture (CLP). Indices of cardiac function, serum myocardial enzymes, and organ function were measured to confirm successful generation of the sepsis mouse model. Cell apoptosis and inflammatory cytokine levels in lung and liver tissues were observed by TUNEL staining and ELISA. Furthermore, the interaction between miR-590-3p and Synapse-associated protein 1 (Syap1) was identified by dual luciferase reporter gene assay. The effect of miR-590-3p on inflammation and organ dysfunction was examined using gain- and loss-of-function experiments. Syap1 was found poorly expressed, whereas miR-590-3p was highly expressed in the sepsis-affected mice. Moreover, the elevation of miR-590-3p markedly downregulated the expression of anti-inflammatory cytokines IL10, Syap1, TGF-β, Smad3, and NF-кB p65 in modeled mice. Indices of cardiac and organ function were decreased, serum myocardial enzyme indices were notably increased, and cell apoptosis and pro-inflammatory cytokines of lung and liver tissues were increased in modeled mice. Together these results demonstrated that miR-590-3p can block the TGF-β/Smad signaling pathway through downregulation of Syap1 and, thereby, contribute to sepsis inflammation and organ dysfunction.


Sign in / Sign up

Export Citation Format

Share Document