scholarly journals PET Study of Sphingosine-1-Phosphate Receptor 1 Expression in Response to Vascular Inflammation in a Rat Model of Carotid Injury

2017 ◽  
Vol 16 ◽  
pp. 153601211668977 ◽  
Author(s):  
Hui Liu ◽  
Hongjun Jin ◽  
Xuyi Yue ◽  
Junbin Han ◽  
Pamela Baum ◽  
...  
2013 ◽  
Vol 126 (8) ◽  
pp. 545-556 ◽  
Author(s):  
Fiorentina Roviezzo ◽  
Antonella De Angelis ◽  
Luana De Gruttola ◽  
Antonio Bertolino ◽  
Nikol Sullo ◽  
...  

S1P exerts a diverse set of vascular responses, and PAR-2 has been shown to be involved in vascular inflammation as well as in other inflammatory-based diseases. In the present study, we demonstrate that S1P-mediated vascular effect involves PAR-2 activation.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shailaja Mahajan-Thakur ◽  
Andreas Böhm ◽  
Gabriele Jedlitschky ◽  
Karsten Schrör ◽  
Bernhard H. Rauch

Sphingosine-1-phosphate (S1P) is a versatile lipid signaling molecule and key regulator in vascular inflammation. S1P is secreted by platelets, monocytes, and vascular endothelial and smooth muscle cells. It binds specifically to a family of G-protein-coupled receptors, S1P receptors 1 to 5, resulting in downstream signaling and numerous cellular effects. S1P modulates cell proliferation and migration, and mediates proinflammatory responses and apoptosis. In the vascular barrier, S1P regulates permeability and endothelial reactions and recruitment of monocytes and may modulate atherosclerosis. Only recently has S1P emerged as a critical mediator which directly links the coagulation factor system to vascular inflammation. The multifunctional proteases thrombin and FXa regulate local S1P availability and interact with S1P signaling at multiple levels in various vascular cell types. Differential expression patterns and intracellular signaling pathways of each receptor enable S1P to exert its widespread functions. Although a vast amount of information is available about the functions of S1P and its receptors in the regulation of physiological and pathophysiological conditions, S1P-mediated mechanisms in the vasculature remain to be elucidated. This review summarizes recent findings regarding the role of S1P and its receptors in vascular wall and blood cells, which link the coagulation system to inflammatory responses in the vasculature.


2004 ◽  
Vol 286 (2) ◽  
pp. H768-H774 ◽  
Author(s):  
Chu Kataoka ◽  
Kensuke Egashira ◽  
Minako Ishibashi ◽  
Shujiro Inoue ◽  
Weihua Ni ◽  
...  

Amlodipine (a new class of calcium channel antagonist) has been shown to limit the progression of arteriosclerosis and decrease the incidence of cardiovascular events. The mechanisms underlying the beneficial effects of amlodipine, however, remain unclear. Therefore, we hypothesized that amlodipine attenuates the development of arteriosclerosis through the inhibition of inflammation in vivo. Long-term inhibition of nitric oxide (NO) by administration of a NO synthase inhibitor, Nω-nitro-l-arginine methyl ester (l-NAME), to rats induces coronary vascular inflammation [monocyte infiltration, monocyte chemoattractant protein-1 (MCP-1) expression, increased activity of angiotensin-converting enzyme (ACE)], and arteriosclerosis. Here, we used the rat model to investigate the anti-inflammatory effects of amlodipine in vivo. Treatment with amlodipine markedly inhibited the l-NAME-induced increase in vascular inflammation, oxidative stress, and local ACE and Rho activity and prevented arteriosclerosis. Interestingly, amlodipine prevented the l-NAME-induced increase in MCP-1 receptor CCR2 expression in circulating monocytes. Amlodipine markedly attenuated the high mortality rate at 8 wk of treatment. These data suggest that amlodipine attenuated arteriosclerosis through inhibiting inflammatory disorders in the rat model of long-term inhibition of NO synthesis. The anti-inflammatory effects of amlodipine seem to be mediated not only by the inhibition of local factors such as MCP-1 but also by the decrease in CCR2 in circulating monocytes. Inhibition of the MCP-1 to CCR2 pathway may represent novel anti-inflammatory actions of amlodipine beyond blood pressure lowering.


2008 ◽  
Vol 29 (9) ◽  
pp. 1051-1059 ◽  
Author(s):  
Hong-wei TAN ◽  
Shan-shan XING ◽  
Xiu-ping BI ◽  
Li LI ◽  
Hui-ping GONG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document