Induced Roll Vection from Stimulation of the Central Visual Field

1987 ◽  
Vol 31 (2) ◽  
pp. 263-265 ◽  
Author(s):  
George J. Andersen ◽  
Brian P. Dyre

An important consideration for some types of flight simulation is that sufficient visual information be provided for a perception of self-motion. A general conclusion of earlier research is that peripheral stimulation (outside a 30 deg. diameter area of the central visual field) is necessary for perceived self-motion to occur. More recently Andersen and Braunstein (1985) demonstrated that induced self-motion could occur when visual information simulating forward motion of the observer was presented to a limited area of the central visual field. In the present study, the perception of induced roll vection (rotation about the line of sight) from visual stimulation of the central visual field was examined. Subjects viewed computer generated displays that simulated observer motion relative to a volume of randomly positioned points. Two variables were examined: 1) the presence or absence of a simulated forward motion, and 2) the presence of a 15 deg. or 30 deg. sinusoidal roll motion. It was found that: 1) induced roll vection occurred with stimulation restricted to a 10 deg. diameter area of the central visual field; 2) greater postural instability occurred for displays with a 30 deg. roll as compared to a 15 deg. roll; and 3) significantly greater postural instability occurred along the X-axis (left/right) as compared to the Y-axis (front/back). The implications of this research for flight simulation will be discussed.

1988 ◽  
Vol 32 (19) ◽  
pp. 1434-1438 ◽  
Author(s):  
Brian P. Dyre ◽  
George J. Andersen

An important consideration for some types of flight simulation is that sufficient information be provided for a veridical perception of a pilot's motion and/or change in orientation. Previous research (Andersen & Braunstein, 1985) has suggested that induced self-motion from stimulation of the central visual field may be related to internal depth within the display. The purpose of the present study was to examine the effects of internal depth within the display on perceived changes in orientation. Subjects monocularly viewed displays simulating observer motion within a volume of randomly positioned points through a window which limited the field of view to 15 degrees. The velocity of the displays varied according to a sum of four frequencies. Change in posture was used to measure changes in perceived spatial orientation. Three variables were examined: 1) the extent of internal depth within the display, 2) the presence or absence of visual information specifying change in orientation, and 3) the frequency of motion simulated by the display. A frequency analysis of postural sway indicated that increased sway occurred at frequencies of .375 Hz and lower when motion at these frequencies was present in the display. However, the extent of internal depth in the display had no consistent effect on the perception of changing orientation. The implications of this research for flight simulation will be discussed.


Perception ◽  
1992 ◽  
Vol 21 (3) ◽  
pp. 337-349 ◽  
Author(s):  
Laura Telford ◽  
Jonathan Spratley ◽  
Barrie J Frost

Illusory self-motion (vection) is thought to be determined by motion in the peripheral visual field, whereas stimulation of more central retinal areas results in object-motion perception. Recent data suggest that vection can be produced by stimulation of the central visual field provided it is configured as a more distant surface. In this study vection strength (tracking speed, onset latency, and the percentage of trials where vection was experienced) and the direction of self-motion produced by displays moving in the central visual field were investigated. Apparent depth, introduced by using kinetic occlusion information, influenced vection strength. Central displays perceived to be in the background elicited stronger vection than identical displays appearing in the foreground. Further, increasing the eccentricity of these displays from the central retina diminished vection strength. If the central and peripheral displays were moved in opposite directions, vection strength was unaffected, and the direction of vection was determined by motion of the central display on almost half of the trials when the centre was far. Near centres produced fewer centre-consistent responses. A complete understanding of linear vection requires that factors such as display size, retinal locus, and apparent depth plane are considered.


2020 ◽  
Vol 225 (6) ◽  
pp. 1839-1853 ◽  
Author(s):  
Jan W. Kurzawski ◽  
Kyriaki Mikellidou ◽  
Maria Concetta Morrone ◽  
Franco Pestilli

Abstract The human visual system is capable of processing visual information from fovea to the far peripheral visual field. Recent fMRI studies have shown a full and detailed retinotopic map in area prostriata, located ventro-dorsally and anterior to the calcarine sulcus along the parieto-occipital sulcus with strong preference for peripheral and wide-field stimulation. Here, we report the anatomical pattern of white matter connections between area prostriata and the thalamus encompassing the lateral geniculate nucleus (LGN). To this end, we developed and utilized an automated pipeline comprising a series of Apps that run openly on the cloud computing platform brainlife.io to analyse 139 subjects of the Human Connectome Project (HCP). We observe a continuous and extended bundle of white matter fibers from which two subcomponents can be extracted: one passing ventrally parallel to the optic radiations (OR) and another passing dorsally circumventing the lateral ventricle. Interestingly, the loop travelling dorsally connects the thalamus with the central visual field representation of prostriata located anteriorly, while the other loop travelling more ventrally connects the LGN with the more peripheral visual field representation located posteriorly. We then analyse an additional cohort of 10 HCP subjects using a manual plane extraction method outside brainlife.io to study the relationship between the two extracted white matter subcomponents and eccentricity, myelin and cortical thickness gradients within prostriata. Our results are consistent with a retinotopic segregation recently demonstrated in the OR, connecting the LGN and V1 in humans and reveal for the first time a retinotopic segregation regarding the trajectory of a fiber bundle between the thalamus and an associative visual area.


1979 ◽  
Vol 42 (1) ◽  
pp. 137-152 ◽  
Author(s):  
A. Antonini ◽  
G. Berlucchi ◽  
C. A. Marzi ◽  
J. M. Sprague

1. Section of the posterior two-thirds of the corpus callosum eliminates almost completely the response of superior colliculus (SC) neurons to stimulation of the contralateral eye in split-chiasm cats. On the contrary, the responsiveness of SC neurons to stimulation of the contralateral eye is not abolished by a transection of the posterior and tectal commissures leaving the corpus callosum intact. The callosal section also reduces the number of SC receptive fields abutting the vertical meridian in the ipsilateral eye of split-chiasm cats. 2. In cats with intact optic pathways, a similar callosal section abolishes the SC representation of the ipsilateral visual field in the ipsilateral eye and also reduces the number of receptive fields adjoining the vertical meridian in the same eye. In the contralateral eye, the SC representation of the ipsilateral visual field is reduced in extension to about one-fifth of that seen in cats with intact commissures. 3. The results suggest that the corpus callosum is the main pathway for cross-midline communication of visual information at not only the cortical, but also the midbrain level. The corpus callosum may subserve this function because it contains uninterrupted crossed corticotectal projections or because it transmits visual information from one hemisphere to contralateral cortical areas projecting ipsilaterally to SC. The latter hypothesis is more likely but, in any case, the findings imply that the lack of interhemispheric transfer of visual learning in cats with a chiasmatic and callosal section may depend on a midline disconnection of both subcortical and cortical visual centers. 4. The corpus callosum is also responsible for the representation of the ipsilateral visual field of the ipsilateral eye in the cat SC. The SC representation of the ipsilateral visual field in the contralateral eye is due, in minimal part, to direct retinotectal connections from temporal retina and, for the largest part, to the corpus callosum. 5. Finally, the corpus callosum contributes to the representation of the contralateral visual field near the vertical meridian of the temporal retina in both split-chiasm and normal cats. This is probably due to the scarcity of direct retinotectal projections from this part of the retina and to their supplementation by corticotectal neurons influenced by the callosal afferents.


2020 ◽  
Author(s):  
Jan W. Kurzawski ◽  
Kyriaki Mikellidou ◽  
Maria Concetta Morrone ◽  
Franco Pestilli

AbstractThe human visual system is capable of processing visual information from fovea to the far peripheral visual field. Recent fMRI studies have shown a full and detailed retinotopic map in area prostriata, located ventro-dorsally and anterior to the calcarine sulcus along the parietooccipital sulcus with strong preference for peripheral and wide-field stimulation. Here, we report the anatomical pattern of white-matter connections between area prostriata and the thalamus encompassing the lateral geniculate nucleus (LGN). We observe a continuous and extended bundle of white matter fibers from which two subcomponents can be extracted: one passing ventrally parallel to the optic radiations (OR) and another passing dorsally circumventing the lateral ventricle. Interestingly, the loop travelling dorsally connects the thalamus with the central visual field representation of prostriata, while the other loop travelling more ventrally connects the LGN with the more peripheral visual field representation. This is consistent with a retinotopic segregation recently demonstrated in the OR, connecting the LGN and V1 in humans. Our results demonstrate for the first time a retinotopic segregation regarding the trajectory of a fiber bundle between the thalamus and an associative visual area.


1998 ◽  
Vol 87 (2) ◽  
pp. 659-663 ◽  
Author(s):  
Shinji Nakamura ◽  
Shinsuke Shimojo

The effects of the size and eccentricity of the visual stimulus upon visually induced perception of self-motion (vection) were examined with various sizes of central and peripheral visual stimulation. Analysis indicated the strength of vection increased linearly with the size of the area in which the moving pattern was presented, but there was no difference in vection strength between central and peripheral stimuli when stimulus sizes were the same. Thus, the effect of stimulus size is homogeneous across eccentricities in the visual field.


1990 ◽  
Vol 5 (5) ◽  
pp. 489-495 ◽  
Author(s):  
Douglas R. Wylie ◽  
Barrie J. Frost

AbstractPrevious electrophysiological studies have shown that neurons in the nucleus of the basal optic root (nBOR) of the pigeon respond best to wholefield stimuli moving slowly in a particular direction in the contralateral visual field. In this study, we have found that some nBOR neurons respond to wholefield stimulation of both eyes. These binocular neurons have spatially separate receptive fields in both visual fields. Some binocular neurons prefer the same direction of wholefield motion in both eyes, and thus respond best to wholefield visual motion which would result from translation movements of the bird, either ascent, descent, or forward and backward motion. Other neurons prefer opposite directions of wholefield motion in each eye and therefore respond optimally to wholefield visual motion simulating rotational movements of the bird, either roll or yaw. These binocular neurons may play a crucial part in the locomotor behavior of the pigeon by providing visual information distinguishing translational and rotational movements.


2011 ◽  
Vol 106 (3) ◽  
pp. 1179-1190 ◽  
Author(s):  
Wilsaan M. Joiner ◽  
James Cavanaugh ◽  
Robert H. Wurtz

In the monkey frontal eye field (FEF), the sensitivity of some neurons to visual stimulation changes just before a saccade. Sensitivity shifts from the spatial location of its current receptive field (RF) to the location of that field after the saccade is completed (the future field, FF). These shifting RFs are thought to contribute to the stability of visual perception across saccades, and in this study we investigated whether the salience of the FF stimulus alters the magnitude of FF activity. We reduced the salience of the usually single flashed stimulus by adding other visual stimuli. We isolated 171 neurons in the FEF of 2 monkeys and did experiments on 50 that had FF activity. In 30% of these, that activity was higher before salience was reduced by adding stimuli. The mean magnitude reduction was 16%. We then determined whether the shifting RFs were more frequent in the central visual field, which would be expected if vision across saccades were only stabilized for the visual field near the fovea. We found no evidence of any skewing of the frequency of shifting receptive fields (or the effects of salience) toward the central visual field. We conclude that the salience of the FF stimulus makes a substantial contribution to the magnitude of FF activity in FEF. In so far as FF activity contributes to visual stability, the salience of the stimulus is probably more important than the region of the visual field in which it falls for determining which objects remain perceptually stable across saccades.


1968 ◽  
Vol 49 (1) ◽  
pp. 171-183
Author(s):  
C. H. FRASER ROWELL ◽  
G. HORN

1. The background activity of neurones in the tritocerebrum of the locust responding to objects moved in the contralateral visual field can be influenced, possibly trans-synaptically, by electrical stimulation of the contralateral neck connective. These changes in background activity are always excitatory and may outlast the period of stimulation by several minutes. The effect of stimulating the ipsilateral cord on the discharge is weak or non-existent. 2. If the contralateral connective is shocked when the response to a moving disk has waned, the recorded cell responds to the disk again. The response continues at a high level for many presentations following stimulation of the connective. Such dishabituation does not follow stimulation of the ipsilateral neck connective. 3. Dishabituation sometimes occurs ‘spontaneously’ and cannot be accounted for as a recovery following a lapse of time. 4. Some units show diurnal variations in their responsiveness to visual stimulation.


Sign in / Sign up

Export Citation Format

Share Document