scholarly journals Numerical investigations on effect of wear-ring clearance on performance of a submersible well pump

2017 ◽  
Vol 9 (7) ◽  
pp. 168781401770415 ◽  
Author(s):  
Weidong Shi ◽  
Xiongfa Gao ◽  
Qihua Zhang ◽  
Desheng Zhang ◽  
Daoxing Ye

A typical submersible well pump was investigated in this article. The whole flow field of submersible well pump was numerically simulated by computational fluid dynamics software. The influence of clearance of wear-rings on the external characteristic and internal flow field was analyzed through comparing the calculation results with experimental results. The result of the numerical simulation shows that changing clearance of front wear-ring has a greater impact on pump performances than changing clearance of back wear-ring, and the head and efficiency of pump decrease with the increase in the size of clearance. Especially when the size of clearance is larger than 0.5 mm, decreasing becomes more obvious. When the front and back wear-ring size of the clearance comes to 1.0 mm, the efficiency decreases from the highest point of 75.31% to 65.44% at rated flow, and the head of pump decreases about 3.5 m. When the size of clearance is 0.2 mm, reverse-flow will appear in the front shroud cavity of the impeller, and leakage from back wear-ring through the balance hole into the impeller, which has a little influence on the flow field of the impeller inlet.

2013 ◽  
Vol 299 ◽  
pp. 52-55
Author(s):  
Ye Zun Sun ◽  
Jun Qi Qin ◽  
Chang Chun Di ◽  
Kai Bo Cui ◽  
Yu Liang Yang

It takes much less than the model test and can give a detailed description of the internal details of the internal flow field of recoil mechanism that use computational fluid dynamics theory and numerical simulation do research. It has the advantages of low cost, accurate calculation, high efficiency, easy to implement and so on. This article provides a brief introduction to the current situation and development outlook of the simulation study of the recoil mechanism using of computational fluid dynamics.


2013 ◽  
Vol 662 ◽  
pp. 586-590
Author(s):  
Gang Lu ◽  
Qing Song Yan ◽  
Bai Ping Lu ◽  
Shuai Xu ◽  
Kang Li

Four types of Super Typhoon drip emitter with trapezoidal channel were selected out for the investigation of the flow field of the channel, and the CFD (Computational Fluid Dynamics) method was applied to simulate the micro-field inside the channel. The simulation results showed that the emitter discharge of different turbulent model is 4%-14% bigger than that of the experimental results, the average discharge deviation of κ-ω and RSM model is 5, 4.5 respectively, but the solving efficiency of the κ-ω model is obviously higher than that of the RSM model.


2014 ◽  
Vol 955-959 ◽  
pp. 2098-2101
Author(s):  
Qin Zhang ◽  
Qiang Li ◽  
Jia Tang

The flow field in anaerobic reactor is very complex, but it has been given wide attention because of its important impact to wastewater treatment effect. It is often studied by numerical simulation. The paper explored the research progress of simulation on the flow field in anaerobic reactor by the summary of development of anaerobic reactor and principle and characteristics of computational fluid dynamics simulation and introduction of study and application status on numerical simulation. And then it gave its opinion on the development of simulation on the flow field in anaerobic reactor in future.


2012 ◽  
Vol 472-475 ◽  
pp. 1432-1436
Author(s):  
Xiao Bin Ji ◽  
Xue Yi Qi ◽  
Xiao Yan Li ◽  
Wan Bin Jin

By using the Reynolds stress turbulence model at big Reynolds number condition and computational fluid dynamics, the data simulating calculation was carried out to the safety valve inner flow field with different opening size and different valve structural parameters. The result were showed in visual graphics , and the study showed that the valve structural parameters impact on the flow field distribution , the cavitation creation and the flow noise greatly.


2013 ◽  
Vol 634-638 ◽  
pp. 3774-3777
Author(s):  
Min Hua Zhang ◽  
Hong Mei Zheng ◽  
Cui Liu ◽  
Yin Hu Qu ◽  
Tao Liang ◽  
...  

the inner flow fields of twelve Hema-type ATY nozzles which have different structure and parameters are simulated by the Fluent software, which is based on the CFD (Computational Fluid Dynamics) theory.Then the simulation results are analyzed,through wich the best designed nozzle is determined.


2013 ◽  
Vol 448-453 ◽  
pp. 3847-3850
Author(s):  
Da Li ◽  
Fang Qin Cheng ◽  
Jian Feng Li ◽  
Yun Shan Guan

Despite the widespread use of hydrocyclone in the process of potash ore desliming, its accurate design is often difficult because the feed composition is complicated and the viscosity is high in the brine system. In this study, a numerical approach based on computational fluid dynamics (CFD) was performed to describe the flow field. The numerical simulation of flow pattern in hydrocyclones for potash ore desliming was presented. Some basic information concerning the velocity and pressure distribution is given, and the results can be used as the fundamental basis for its design.


2012 ◽  
Vol 516-517 ◽  
pp. 1133-1138 ◽  
Author(s):  
Yi Tang ◽  
Jing Xie ◽  
Jin Feng Wang ◽  
Chen Miao ◽  
Yi Zheng

The quantity of the cold store in our country has been rapidly rising since the 1990s, however, the flow field in the cold store is difficult to obtain accurately by experiments. With reference to the experiences in previous numerical simulations in this paper, CFD is used for analyzing two forms of return air in the cold store with the Finite Volume Methods and the SIMPLE Revised. As a result, Combining with the non-equilibrium wall function, it is found that taking the way of return air on both sides of the fan is more reasonable and the cooling consumption of the empty cold store can be saved before the products enter the cold store. Furthermore, the numerical simulation results can provide reference for choosing fans in the small cold store.


2014 ◽  
Vol 886 ◽  
pp. 422-425 ◽  
Author(s):  
Zhu Lin Wang ◽  
Fan Sheng Kong ◽  
Hai Ping Li

Cylindrical launcher is widely used on the battlefield. Characteristic is easy handling, facilitate multigang outfit, cluster launch, emission rate and better generalization and standardization, etc. This paper mainly studies the thermal emission process of a cylindrical launch, the unsteady numerical simulation of the process, using computational fluid dynamics software GAMBIT and FLUENT, and the concept of dynamic grid and updating method of a certain type of cylindrical equipment vertical thermal emission process. Through to the launcher unsteady numerical simulation of the flow field of the guide surface pressure distribution contours, which lay a foundation for the study of the structure of this type of equipment. At the same time it is for the equipment launcher applicability related research to provide the reference.


2014 ◽  
Vol 8 (1) ◽  
pp. 587-593 ◽  
Author(s):  
Jianmin Xu ◽  
Shuiting Zhou

In this study, a double mode muffler that can automatically adjust the exhaust resistance according to the engine speed was designed. Based on computational fluid dynamics theory, the governing equation and turbulent equations for numerical simulation of muffler were established. The pressure loss and the internal flow characteristics of the double mode muffler were analyzed by CFD software. The influence of the distance between the main and submuffler on the flow field of exhaust system was researched. In addition, the internal pressure distribution, the turbulence intensity distribution and the velocity vector diagram of the dual mode muffler were also obtained. The pressure loss of double mode muffler is mainly distributed in the area of air mutations. Main silencer plays a leading role in the entire exhaust system. Therefore, the trend of the pressure loss of the exhaust system with the change in the distance between main and auxiliary muffler was also obtained. When the distance between the main and auxiliary silencer changed from 50 mm to 300 mm, the pressure loss of exhaust system muffler first increased and then decreased, and following this, continued to increase. The results will provide a theoretical basis for designing complex exhaust system.


Author(s):  
S. A. Abdelfattah ◽  
M. T. Schobeiri

This paper describes experimental and numerical investigations of a three-stage high pressure research turbine which incorporates fully 3-D bowed blades at various operating conditions. Experimental data were obtained using interstage aerodynamic measurements at three measurement stations, namely, downstream of the first rotor row, the second stator row and the second rotor row. Measurements were conducted through the use of five-hole probes traversed in both circumferential and radial directions to create a measurement window. Aerodynamics measurements were carried out within a rotational speed range of 1800 to 2800 RPM. Numerical simulation of the aforementioned turbine was performed through the use of a commercial computational fluid dynamics code. A detailed mesh of the three-stages was created and used to simulate the corresponding operating conditions and a comparison was made between experimentally and numerically determined aerodynamics and turbine performance.


Sign in / Sign up

Export Citation Format

Share Document