scholarly journals Dynamic analysis of planar multibody system with a lubricated revolute clearance joint using an improved transition force model

2017 ◽  
Vol 9 (12) ◽  
pp. 168781401774408
Author(s):  
Tao Zhang ◽  
Geng Liu ◽  
Xupeng Wang ◽  
Shangjun Ma
Author(s):  
P. Flores ◽  
H. M. Lankarani ◽  
J. Ambro´sio ◽  
J. C. P. Claro

This work describes the influence of the clearance size and the coefficient of friction on the dynamic response of a revolute clearance joint in multibody mechanical systems. When there is a clearance in a revolute joint, impacts between the journal and the bearing can occur, and consequently, local deformations take place. The impact is internal and the response of the system is performed using a continuous contact force model. The friction effect due to the contact between joint elements is also modeled. The clearance size and friction effects are analyzed separately. Through the use of Poincare´ maps both periodic and chaotic responses of the system are observed. The results predict the existence of the periodic or regular motion at certain clearance sizes and friction coefficients and chaotic or nonlinear in other cases. A detailed discussion of the results relative to a planar slider-crank mechanism with a revolute clearance joint is presented.


Author(s):  
Yu Chen ◽  
Jun Feng ◽  
Qiang He ◽  
Yu Wang ◽  
Yu Sun ◽  
...  

Abstract The slider-crank mechanism is used widely in modern industrial equipment whereby the contact-impact of a revolute clearance joint affects the dynamic behavior of mechanical systems. Combining multibody dynamic theory and nonlinear contact theory, the computational methodology for dynamic analysis of the slider-crank mechanism with a clearance joint is proposed. The differential equations of motion are obtained considering the revolute clearance joint between the connecting rod and slider. In the mechanical system, the contact force is evaluated using the continuous force model proposed by Lankarani and Nikravesh, which can describe the contact-impact phenomenon accurately. Then, the experimental study is performed whereby the numerical results are compared with the test data to validate the proposed model. Moreover, the dynamic response analysis is conducted with various driving velocities and clearance sizes, which also explains that the sensitive dependence of a mechanical system on the revolute clearance joint.


Author(s):  
Xupeng Wang ◽  
Wenzhou Lin ◽  
Xiaomin Ji ◽  
Zhu Gao ◽  
Xiaobo Bai ◽  
...  

This paper focuses on the dynamic responses of a planar mechanism with multiple clearance joints. The effect of the impact between the journal and the bearing in the clearance joint is described using an improved impact force model, and a typical four-bar linkage mechanism with multiple clearance joints is presented as an example. Two conditions are considered in this research, one is the single clearance joint with different position, and the other is multiple clearance joints. From a large number of numerical results, some important conclusions are obtained as follows: (1) with the influence of the clearance joint, the dynamic output of system has obvious vibration in comparison to the ideal value. (2) The position of the clearance joint has a clear effect on the response of system; the larger the distance of the clearance joint from the drive motor, the smaller its influence on the output of the system. (3) With the increase in the clearance joint number, the dynamic stability of the multibody system is decreased gradually, and the dynamic characteristic of the system also appears as obvious nonlinear phenomenon. (4) The coupling phenomenon appears when multiple clearance joints in the multibody system are considered, which should be examined seriously during the process of design and numerical analysis.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


Author(s):  
Sung-Soo Kim ◽  
Jeffrey S. Freeman

Abstract This paper details a constant stepsize, multirate integration scheme which has been proposed for multibody dynamic analysis. An Adams-Bashforth Moulton integration algorithm has been implemented, using the Nordsieck form to store internal integrator information, for multirate integration. A multibody system has been decomposed into several subsystems, treating inertia coupling effects of subsystem equations of motion as the inertia forces. To each subsystem, different rate Nordsieck form of Adams integrator has been applied to solve subsystem equations of motion. Higher order derivative information from the integrator provides approximation of inertia force computation in the decomposed subsystem equations of motion. To show the effectiveness of the scheme, simulations of a vehicle multibody system that consists of high frequency suspension motion and low frequency chassis motion have been carried out with different tire excitation forces. Efficiency of the proposed scheme has been also investigated.


2016 ◽  
Vol 87 (2) ◽  
pp. 955-973 ◽  
Author(s):  
Sajjad Boorghan Farahan ◽  
Mohammad Reza Ghazavi ◽  
Sasan Rahmanian

Sign in / Sign up

Export Citation Format

Share Document