Dynamic analysis of the double crank mechanism with a 3D translational clearance joint employing a variable stiffness contact force model

2019 ◽  
Vol 99 (3) ◽  
pp. 1937-1958 ◽  
Author(s):  
Xuze Wu ◽  
Yu Sun ◽  
Yu Wang ◽  
Yu Chen
Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


Author(s):  
Zhenhua Zhang ◽  
Liang Xu ◽  
Paulo Flores ◽  
Hamid M. Lankarani

Over the last two decades, extensive work has been conducted on dynamic effect of joint clearances in multibody mechanical systems. In contrast, little work has been devoted to optimizing the performance of these systems. In this study, analysis of revolute joint clearance is formulated in term of a Hertzian-based contact force model. For illustration, the classical slider-crank mechanism with a revolute clearance joint at the piston pin is presented, and a simulation model is developed using the analysis/design code MSC.ADAMS. The clearance is modeled as a pin-in-a-hole surface-to-surface dry contact, with appropriate contact force model between the joint and bearing surfaces. Different simulations are performed to demonstrate the influence of the joint clearance size and the input crank speed on the dynamic behavior of the system with the clearance joint. An innovative design-of-experiment (DOE)-based method for optimizing the performance of a mechanical system with the revolute joint clearance for different ranges of design parameters is then proposed. Based on the simulation model results from sample points, which are selected by a Latin hypercube sampling (LHS) method, a polynomial function Kriging meta-model is established instead of the actual simulation model. The reason for development and use of the meta-model is to bypass computationally intensive simulations of a computer model for different design parameter values in place of a more efficient and cost-effective mathematical model. Finally, numerical results obtained from two application examples, considering the different design parameters, including the joint clearance size, crank speed, and contact stiffness, are presented for further analyzing the dynamics of the revolute clearance joint in a mechanical system. This allows for predicting the influence of design parameter changes, in order to minimize contact forces, accelerations, and power requirements due to the existence of joint clearance.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Gengxiang Wang ◽  
Hongzhao Liu

Effects of wear and member flexibility on the dynamic performance of a planar five-bar mechanism with joint-clearance are investigated. The equation of motion of the mechanism is derived based on the absolute nodal coordinate formulation (ANCF). In order to enhance the accuracy of the contact force, the slope of the load–displacement curve of the cylindrical joint with clearance is used. The contact deformation couples the joint wear to the contact state. The contact force model of Flores and coworkers is improved, by the introduction of the stiffness coefficient. The wear depth is predicted by using the Archard's wear model. Simulations show that the multiclearance joints can generate stronger contact forces relative to single clearance joint case. This leads to more severe wear in the joint. However, the mechanism with multiple flexible links can absorb more of the energy arising from the clearance joint, and this improves the wear phenomenon.


Author(s):  
Zhenhua Zhang ◽  
Liang Xu ◽  
Paulo Flores ◽  
Hamid M. Lankarani

Over the past two decades, extensive work has been conducted on the dynamic effect of joint clearances in multibody mechanical systems. In contrast, little work has been devoted to optimizing the performance of these systems. In this study, the analysis of revolute joint clearance is formulated in terms of a Hertzian-based contact force model. For illustration, the classical slider-crank mechanism with a revolute clearance joint at the piston pin is presented and a simulation model is developed using the analysis/design software MSC.ADAMS. The clearance is modeled as a pin-in-a-hole surface-to-surface dry contact, with an appropriate contact force model between the joint and bearing surfaces. Different simulations are performed to demonstrate the influence of the joint clearance size and the input crank speed on the dynamic behavior of the system with the joint clearance. In the modeling and simulation of the experimental setup and in the followed parametric study with a slightly revised system, both the Hertzian normal contact force model and a Coulomb-type friction force model were utilized. The kinetic coefficient of friction was chosen as constant throughout the study. An innovative design-of-experiment (DOE)-based method for optimizing the performance of a mechanical system with the revolute joint clearance for different ranges of design parameters is then proposed. Based on the simulation model results from sample points, which are selected by a Latin hypercube sampling (LHS) method, a polynomial function Kriging meta-model is established instead of the actual simulation model. The reason for the development and use of the meta-model is to bypass computationally intensive simulations of a computer model for different design parameter values in place of a more efficient and cost-effective mathematical model. Finally, numerical results obtained from two application examples with different design parameters, including the joint clearance size, crank speed, and contact stiffness, are presented for the further analysis of the dynamics of the revolute clearance joint in a mechanical system. This allows for predicting the influence of design parameter changes, in order to minimize contact forces, accelerations, and power requirements due to the existence of joint clearance.


Author(s):  
P. Flores ◽  
H. M. Lankarani ◽  
J. Ambro´sio ◽  
J. C. P. Claro

This work describes the influence of the clearance size and the coefficient of friction on the dynamic response of a revolute clearance joint in multibody mechanical systems. When there is a clearance in a revolute joint, impacts between the journal and the bearing can occur, and consequently, local deformations take place. The impact is internal and the response of the system is performed using a continuous contact force model. The friction effect due to the contact between joint elements is also modeled. The clearance size and friction effects are analyzed separately. Through the use of Poincare´ maps both periodic and chaotic responses of the system are observed. The results predict the existence of the periodic or regular motion at certain clearance sizes and friction coefficients and chaotic or nonlinear in other cases. A detailed discussion of the results relative to a planar slider-crank mechanism with a revolute clearance joint is presented.


Author(s):  
Zhengfeng Bai ◽  
Jijun Zhao ◽  
Xin Shi

Abstract Modern spacecraft usually has large deployment structure, which consisting of plenty of joints could produce undesirable dynamic responses when considering clearances in joints and driving input fluctuation. However, in the dynamic performance analysis of space deployment mechanism, the clearances and input fluctuation are always ignored. In this study, the dynamic responses of a flexible planar scissor-like truss deployment mechanism with imperfect joint considering clearance and input fluctuation are investigated using computational methodology. First, the mathematic model of clearance joint is established. The revolute clearance joint is considered as force constraint and the joint components of an imperfect joint with clearance are modeled as contact bodies. The normal contact force model of clearance joint is established using a continuous contact force model considering energy loss. The friction effect is considered using a modified Coulomb friction model. Then, the dynamics performances of the flexible planar scissor-like truss deployment mechanism with imperfect joint considering clearance and input fluctuation are presented and discussed. Different case studies for the scissor-like truss deployment mechanism with clearance are investigated considering driving input fluctuation. The simulation results show that the dynamic characteristics of the mechanism with clearance joint are changed more obviously when considering driving input fluctuation. Therefore, investigation implies that dynamics responses of the truss deployment mechanism are much worse when considering clearance joint and input fluctuation, which indicates that driving input fluctuation leads to more obvious degradation of the dynamic performance of the truss deployment mechanism with imperfect joint.


2006 ◽  
Vol 1 (3) ◽  
pp. 240-247 ◽  
Author(s):  
P. Flores ◽  
J. Ambrósio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, with the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four-bar mechanism is used as an illustrative example and some numerical results are presented, with the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


Author(s):  
Hamid M. Lankarani ◽  
Parviz E. Nikravesh

Abstract A continuous analysis method for the direct-central impact of two solid particles is presented. Based on the assumption that local plasticity effects are the sole factor accounting for the dissipation of energy in impact, a Hertzian contact force model with permanent indentation is constructed. Utilizing energy and momentum considerations, the unknown parameters in the model are analytically evaluated in terms of a given coefficient of restitution and velocities before impact. The equations of motion of the two solids may then be integrated forward in time knowing the variation of the contact force during the contact period. For Illustration, an impact of two soft metallic particles is studied.


Sign in / Sign up

Export Citation Format

Share Document