scholarly journals Stress/strain and curvature analysis of laser-scribed polyethylene terephthalate films with multiple grooves using finite element method

2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879323 ◽  
Author(s):  
Do Won Heo ◽  
Min Gi Kang ◽  
Ho Lee ◽  
Sung Yeol Kim

Laser scribing can be used to enhance the flexibility of polymer films for flexible device applications. To optimize the bending curvature by controlling the scribing parameters—the depth, number, and interval of the scribed grooves, finite element analysis was conducted on the bending tests of scribed polyethylene terephthalate films. Moreover, the influences of the parameters on the stress/strain near the grooves were investigated. The maximum stress/strain and curvature generally increased with an increase in depth, whereas these values decreased with an increase in number and intervals. However, to maintain the mechanical stability of the films, the parameters were limited. The optimization results revealed that the maximum value of the curvature was 2.6 mm−1 at depth = 40 and intervals = 25 μm, for number = 7. An empirical equation relating the curvature to depth and intervals was also provided. The results of the analysis are useful for the design of laser-scribed grooves on various polymer films, for the enhancement of their bending curvature, while minimizing the mechanical instability.

Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


2011 ◽  
Vol 39 (4) ◽  
pp. 223-244 ◽  
Author(s):  
Y. Nakajima

Abstract The tire technology related with the computational mechanics is reviewed from the standpoint of yesterday, today, and tomorrow. Yesterday: A finite element method was developed in the 1950s as a tool of computational mechanics. In the tire manufacturers, finite element analysis (FEA) was started applying to a tire analysis in the beginning of 1970s and this was much earlier than the vehicle industry, electric industry, and others. The main reason was that construction and configurations of a tire were so complicated that analytical approach could not solve many problems related with tire mechanics. Since commercial software was not so popular in 1970s, in-house axisymmetric codes were developed for three kinds of application such as stress/strain, heat conduction, and modal analysis. Since FEA could make the stress/strain visible in a tire, the application area was mainly tire durability. Today: combining FEA with optimization techniques, the tire design procedure is drastically changed in side wall shape, tire crown shape, pitch variation, tire pattern, etc. So the computational mechanics becomes an indispensable tool for tire industry. Furthermore, an insight to improve tire performance is obtained from the optimized solution and the new technologies were created from the insight. Then, FEA is applied to various areas such as hydroplaning and snow traction based on the formulation of fluid–tire interaction. Since the computational mechanics enables us to see what we could not see, new tire patterns were developed by seeing the streamline in tire contact area and shear stress in snow in traction.Tomorrow: The computational mechanics will be applied in multidisciplinary areas and nano-scale areas to create new technologies. The environmental subjects will be more important such as rolling resistance, noise and wear.


1985 ◽  
Vol 58 (4) ◽  
pp. 830-856 ◽  
Author(s):  
R. J. Cembrola ◽  
T. J. Dudek

Abstract Recent developments in nonlinear finite element methods (FEM) and mechanics of composite materials have made it possible to handle complex tire mechanics problems involving large deformations and moderate strains. The development of an accurate material model for cord/rubber composites is a necessary requirement for the application of these powerful finite element programs to practical problems but involves numerous complexities. Difficulties associated with the application of classical lamination theory to cord/rubber composites were reviewed. The complexity of the material characterization of cord/rubber composites by experimental means was also discussed. This complexity arises from the highly anisotropic properties of twisted cords and the nonlinear stress—strain behavior of the laminates. Micromechanics theories, which have been successfully applied to hard composites (i.e., graphite—epoxy) have been shown to be inadequate in predicting some of the properties of the calendered fabric ply material from the properties of the cord and rubber. Finite element models which include an interply rubber layer to account for the interlaminar shear have been shown to give a better representation of cord/rubber laminate behavior in tension and bending. The application of finite element analysis to more refined models of complex structures like tires, however, requires the development of a more realistic material model which would account for the nonlinear stress—strain properties of cord/rubber composites.


2015 ◽  
Vol 76 ◽  
pp. 522-527
Author(s):  
M. Shamil Jaffarullah ◽  
Nur’Amirah Busu ◽  
Cheng Yee Low ◽  
J.B. Saedon ◽  
Armansyah ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Benedict Jain A.R. Tony ◽  
Masilamany S. Alphin

SummaryStudy aim: Interactions between the fingers and a handle can be analyzed using a finite element finger model. Hence, the biomechanical response of a hybrid human finger model during contact with varying diameter cylindrical handles was investigated numerically in the present study using ABAQUS/CAE.Materials and methods: The finite element index finger model consists of three segments: the proximal, middle, and distal phalanges. The finger model comprises skin, bone, subcutaneous tissue and nail. The skin and subcutaneous tissues were assumed to be non-linearly elastic and linearly visco-elastic. The FE model was applied to predict the contact interaction between the fingers and a handle with 10 N, 20 N, 40 N and 50 N grip forces for four different diameter handles (30 mm, 40 mm, 44mm and 50 mm). The model predictions projected the biomechanical response of the finger during the static gripping analysis with 200 incremental steps.Results: The simulation results showed that the increase in contact area reduced the maximal compressive stress/strain and also the contact pressure on finger skin. It was hypothesized in this study that the diameter of the handle influences the stress/strain and contact pressure within the soft tissue during the contact interactions.Conclusions: The present study may be useful to study the behavior of the finger model under the static gripping of hand-held power tools.


1985 ◽  
Vol 107 (1) ◽  
pp. 231-237 ◽  
Author(s):  
A. Kaufman

A simplified inelastic analysis computer program (ANSYMP) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects can be calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials, and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document