scholarly journals Systems optimisation of an active thermal management system during engine warm-up

Author(s):  
Richard D Burke ◽  
Andy J Lewis ◽  
Sam Akehurst ◽  
Chris J Brace ◽  
Ian Pegg ◽  
...  

Active thermal management systems offer a potential for small improvements in fuel consumption that will contribute to upcoming legislation on carbon dioxide emissions. These systems offer new degrees of freedom for engine calibration; however, their full potential will only be exploited if a systems approach to their calibration is adopted, in conjunction with other engine controls. In this work, a design-of-experiments approach is extended to allow its application to transient drive cycles performed on a dynamic test stand. Experimental precision is of crucial importance in this technique since even small errors would obscure the effects of interest. The dynamic behaviour of the engine was represented mathematically in a manner that enabled conventional steady state modelling approaches to be employed in order to predict the thermal state of critical parts of the engine as a function of the actuator settings. A 17-point test matrix was undertaken, and subsequent modelling and optimisation procedures indicated potential 2–3% fuel consumption benefits under iso-nitrogen oxide conditions. Reductions in the thermal inertia appeared to be the most effective approach for reducing the engine warm-up time, which translated approximately to a 1.3% reduction in the fuel consumption per kilogram of coolant. A novel oil-cooled exhaust gas recirculation system showed the significant benefits of cooling the exhaust gases, thereby reducing the inlet gas temperature by 5 °C and subsequently the nitrogen oxide emissions by 6%, in addition to increasing the warm-up rate of the oil. This suggested that optimising the thermal management system for cooling the gases in the exhaust gas recirculation system can offer significant improvements. For the first time this paper presents a technique that allows simple predictive models of the thermal state of the engine to be integrated into the calibration process in order to deliver the optimum benefit. In particular, it is shown how the effect of the thermal management system on the nitrogen oxides can be traded off, by advancing the injection timing, to give significant improvements in the fuel consumption.

2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880960 ◽  
Author(s):  
Xianqing Shen ◽  
Kai Shen ◽  
Zhendong Zhang

The effects of high-pressure and low-pressure exhaust gas recirculation on engine and turbocharger performance were investigated in a turbocharged gasoline direct injection engine. Some performances, such as engine combustion, fuel consumption, intake and exhaust, and turbocharger operating conditions, were compared at wide open throttle and partial load with the high-pressure and low-pressure exhaust gas recirculation systems. The reasons for these changes are analyzed. The results showed EGR system of gasoline engine could optimize the cylinder combustion, reduce pumping mean effective pressure and lower fuel consumption. Low-pressure exhaust gas recirculation system has higher thermal efficiency than high-pressure exhaust gas recirculation, especially on partial load condition. The main reasons are as follows: more exhaust energy is used by the turbocharger with low-pressure exhaust gas recirculation system, and the lower exhaust gas temperature of engine would optimize the combustion in cylinder.


2020 ◽  
Vol 19 (4) ◽  
pp. 305-310
Author(s):  
G. M. Kuharonak ◽  
D. V. Kapskiy ◽  
V. I. Berezun

The purpose of this work is to consider the requirements for emissions of harmful substances of diesel engines by selecting design and adjustment parameters that determine the organization of the workflow, and the exhaust gas cleaning system, taking into account the reduction of fuel consumption. Design elements and geometric characteristics of structures for a turbocharged diesel engine of Д-245 series produced by JSC HMC Minsk Motor Plant (4ЧН11/12.5) with a capacity of 90 kW equipped with an electronically controlled battery fuel injection have been developed: exhaust gas recirculation along the high pressure circuit, shape and dimensions of the combustion chamber, the number and angular arrangement of the nozzle openings in a nozzle atomizer, and inlet channels of the cylinder head. Methods for organizing a workflow are proposed that take into account the shape of the indicator diagrams and affect the emissions of nitrogen oxides and dispersed particles differently. Their implementation allows us to determine the boundary ranges of changes in the control parameters of the fuel supply and exhaust gas recirculation systems when determining the area of minimizing the specific effective fuel consumption and the range of studies for the environmental performance of a diesel engine. The paper presents results of the study on the ways to meet  the requirements for emissions of harmful substances, obtained by considering options for the organization of working processes, taking into account the reduction in specific effective fuel consumption, changes in the average temperature of the exhaust gases and diesel equipment. To evaluate these methods, the following indicators have been identified: changes in specific fuel consumption and average temperature of the toxicity cycle relative to the base cycle, the necessary degree of conversion of the purification system for dispersed particles and NOx. Recommendations are given on choosing a diesel engine to meet Stage 4 emission standards for nitrogen oxides and dispersed particles.


2017 ◽  
Vol 170 (3) ◽  
pp. 88-95
Author(s):  
Andrzej BIENIEK ◽  
Jarosław MAMALA ◽  
Mariusz GRABA ◽  
Krystian HENNEK

An attempt has been made to clarify the effect of wide-ranging control of the exhaust gas recirculation system on the cylinder pressure and ecological engine performance. This publication contains the results of tests performed on the CI (compression ignition) engine of the off-road vehicle mounted on the test bench. The study was based on advanced EGR control with a proportional valve and a very efficient exhaust gases cooling system. Analysis of the test results is based on the cylinder pressure and the concentration of NOx and PM components at exhaust gases. The study included the influence of the exhaust gas recirculation system control on parameters such as differential pressure, MBF, and relative NOx and PM emissions. As demonstrated by the analysis conducted, the EGR valve control method and the exhaust gas cooling intensity significantly affect the cylinder pressure and its ecological performance.


2019 ◽  
pp. 81-86
Author(s):  
Дмитро Вікторович Коновалов

There are many ways and methods to reduce exhaust gases emissions on modern ships. One of the most effective ways to reduce NOx and SOx emissions is to use of exhaust gas recirculation (EGR technology). The EGR system disadvantage is an increase in back pressure through additional pressure losses in the scrubber and heat ex-changer, which entails an engine fuel efficiency deterioration. Creating a reliable and efficient heat exchanger for cooling recirculation gases is a complex task due to deposits and pollution emitted by these gases. In the pre-sent work, the jet apparatus effectiveness named aerothermopressor is analyzed in the scheme with exhaust gases recirculation of the ship low-speed two-stroke engine. Aerothermopressor is a two-phase jet for contact disperse cooling, in which by increasing the heat from the gas stream the gas pressure and cooling are increased. The calculation of the characteristics of the engine was carried out, both in nominal, and in operating modes and in all possible range of partial loads. The installation of the aerothermopressor before the scrubber is pro-posed, which allows reducing engine thermal load. Increasing the pressure in the aerothermopressor by 0.2-0.4 ∙ 105 Pa (6-12 %) allows reducing the back pressure in the gas exhaust system and thus reducing the load on the exhaust gas recirculation fan and when the engine load is higher than 75% in the cold zone, the fan is not need-ed, which additionally allows to reduce the specific fuel consumption. The parameters of the exhaust gases that are going to be recirculated and the processes of their gas-dynamic cooling in the aerothermopressor are based on the developed technique and program using the thermodynamic and gas dynamics equations. The proposed scheme-design solution allows at a high environmental friendliness of the existing exhaust gas recirculation sys-tem to provide a certain reduction in specific fuel consumption. It was determined that the engine specific fuel consumption has been decreasing when the aerothermopressor is used to Dge = 2.5-3.0 g/(kW·h) (1.5-1.7%).


2012 ◽  
Vol 25 ◽  
pp. 01019
Author(s):  
Cécile Gaborieau ◽  
Alain Sommier ◽  
Jean Toutain ◽  
Yannick Anguy ◽  
Gérald Crepeau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document