scholarly journals Analysis of thin film flow of generalized Maxwell fluid confronting withdrawal and drainage on non-isothermal cylindrical surfaces

2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988100 ◽  
Author(s):  
Saif Ullah ◽  
Kareem Akhtar ◽  
Nadeem Alam Khan ◽  
Arshad Ullah

This investigation is concerned with the study of thin film flow of a generalized Maxwell fluid along with slip conditions, confronting withdrawal and drainage on non-isothermal cylindrical surfaces. The governing equations have been formulated from the continuity equation, momentum equation, and energy equation. Analytical solutions for the velocity field, volume flow rate, average film velocity, tangential stress, and temperature are obtained in series form through the Binomial expansion technique in both withdrawal and drainage cases. The well-known solutions for a Newtonian fluid are regained as a particular case of our acquired general solutions in all flow cases. In addition, solutions for the power-law fluid model, executing alike motion, can be recovered as a limiting case of our acquired general solutions. The influence of different dimensionless parameters on all physical quantities (i.e. velocity, volume flow rate, average film velocity, tangential stress, and temperature profile) is examined and discussed graphically for both generalized Maxwell and Newtonian fluids.

2018 ◽  
Vol 28 (7) ◽  
pp. 1596-1612 ◽  
Author(s):  
N. Faraz ◽  
Y. Khan

Purpose This paper aims to explore the variable properties of a flow inside the thin film of a unsteady Maxwell fluid and to analyze the effects of shrinking and stretching sheet. Design/methodology/approach The governing mathematical model has been developed by considering the boundary layer limitations. As a result of boundary layer assumption, a nonlinear partial differential equation is obtained. Later on, similarity transformations have been adopted to convert partial differential equation into an ordinary differential equation. A well-known homotopy analysis method is implemented to solve the problem. MATHEMATICA software has been used to visualize the flow behavior. Findings It is observed that variable viscosity does not have a significant effect on velocity field and temperature distribution either in shrinking or stretching case. It is noticed that Maxwell parameter has no dramatic effect on the flow of thin liquid fluid. It has been seen that heat flow increases by increasing the conductivity with temperature in both cases (shrinking/stretching). As a result, fluid temperature goes down when than delta = 0.05 than delta = 0.2. Originality/value To the best of authors’ knowledge, nobody has conducted earlier thin film flow of unsteady Maxwell fluid with variable fluid properties and comparison of shrinking and stretching sheet.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


2010 ◽  
Vol 7 (3) ◽  
pp. 169-176 ◽  
Author(s):  
S. K. Pandey ◽  
Dharmendra Tripathi

The paper presents an analytical investigation of the peristaltic transport of a viscous fluid under the influence of a magnetic field through a tube of finite length in a dimensionless form. The expressions of pressure gradient, volume flow rate, average volume flow rate and local wall shear stress have been obtained. The effects of the transverse magnetic field and electrical conductivity (i.e. the Hartmann number) on the mechanical efficiency of a peristaltic pump have also been studied. The reflux phenomenon is also investigated. It is concluded, on the basis of the pressure distribution along the tubular length and pumping efficiency, that if the transverse magnetic field and the electric conductivity increase, the pumping machinery exerts more pressure for pushing the fluid forward. There is a linear relation between the averaged flow rate and the pressure applied across one wavelength that can restrain the flow due to peristalsis. It is found that there is a particular value of the averaged flow rate corresponding to a particular pressure that does not depend on the Hartmann number. Naming these values ‘critical values’, it is concluded that the pressure required for checking the flow increases with the Hartmann number above the critical value and decreases with it below the critical value. It is also inferred that magneto-hydrodynamic parameters make the fluid more prone to flow reversal. The conclusion applied to oesophageal swallowing reveals that normal water is easier to swallow than saline water. The latter is more prone to flow reversal. A significant difference between the propagation of the integral and non-integral number of waves along the tube is that pressure peaks are identical in the former and different in the latter cases.


Sign in / Sign up

Export Citation Format

Share Document