scholarly journals Variable thickness flow over a rotating disk under the influence of variable magnetic field: An application to parametric continuation method

2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093638 ◽  
Author(s):  
Muhammad Shuaib ◽  
Rehan Ali Shah ◽  
Muhammad Bilal

The present work explores the behavior of three-dimensional incompressible viscous fluid flow and heat transfer over the surface of a non-flat stretchable rotating disk. A variable thickness fluid is subjected under the influence of an external variable magnetic field and heat transfer. Navier–Stokes equation is coupled with Maxwell equations to examine the hydrothermal properties of fluid. The basic governing equations of motion are diminished to a system of nonlinear ordinary differential equations using appropriate similarity framework, which are further treated with numerical scheme known as parametric continuation method. The parametric continuation method has combined interesting characteristics of both shooting and implicit finite difference methods. For validity of the present numerical scheme, a comparison with the published work is performed and it is found that the results are in excellent agreement with each other. Numerical and graphical results for the velocity, temperature, and magnetic strength profiles as well as skin fractions and Nusselt number are presented and discussed in detail for various physical parameters. The heat transfer process is reduced with positive increment of no-flatness parameter [Formula: see text], while Prandtl number increases the heat transfer rate at the surface of the disk.

2016 ◽  
Vol 71 (11) ◽  
pp. 1003-1015 ◽  
Author(s):  
Chunyan Liu ◽  
Mingyang Pan ◽  
Liancun Zheng ◽  
Chunying Ming ◽  
Xinxin Zhang

AbstractThis paper studies the steady flow and heat transfer of Bingham plastic fluid over a rotating disk of finite radius with variable thickness radially in boundary layer. The boundary layer flow is caused by the rotating disk when the extra stress is greater than the yield stress of the Bingham fluid. The analyses of the velocity and temperature field related to the variable thickness disk have not been investigated in current literatures. The governing equations are first simplified into ordinary differential equations owing to the generalized von Kármán transformation for seeking solutions easily. Then semi-similarity approximate analytical solutions are obtained by using the homotopy analysis method for different physical parameters. It is found that the Bingham number clearly influences the velocity field distribution, and the skin friction coefficientCfris nonlinear growth with respect to the shape parameterm. Additionally, the effects of the involved parameters (i.e. shape parameterm, variable thickness parameterβ, Reynolds number Rev, and Prandtl number Pr) on velocity and temperature distribution are investigated and analyzed in detail.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bai Yu ◽  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
...  

AbstractThe nanofluids owing to their alluring attributes like enhanced thermal conductivity and better heat transfer characteristics have a vast variety of applications ranging from space technology to nuclear reactors etc. The present study highlights the Ostwald-de-Waele nanofluid flow past a rotating disk of variable thickness in a porous medium with a melting heat transfer phenomenon. The surface catalyzed reaction is added to the homogeneous-heterogeneous reaction that triggers the rate of the chemical reaction. The added feature of the variable thermal conductivity and the viscosity instead of their constant values also boosts the novelty of the undertaken problem. The modeled problem is erected in the form of a system of partial differential equations. Engaging similarity transformation, the set of ordinary differential equations are obtained. The coupled equations are numerically solved by using the bvp4c built-in MATLAB function. The drag coefficient and Nusselt number are plotted for arising parameters. The results revealed that increasing surface catalyzed parameter causes a decline in thermal profile more efficiently. Further, the power-law index is more influential than the variable thickness disk index. The numerical results show that variations in dimensionless thickness coefficient do not make any effect. However, increasing power-law index causing an upsurge in radial, axial, tangential, velocities, and thermal profile.


2017 ◽  
Vol 21 (6 Part B) ◽  
pp. 3062-3062
Author(s):  
E Editorial

Due to error of the Editorial staff, unrevised manuscript has been published instead of the REVISED MANUSCRIPT sent by authors after peer review process. The corrected version of this article is printed in this issue on pages pp. 3063-3073<br><br><font color="red"><b> Link to the corrected article <u><a href="http://dx.doi.org/10.2298/TSCI160524180R">10.2298/TSCI160524180R</a></b></u>


2020 ◽  
Vol 330 ◽  
pp. 01035
Author(s):  
Rabah Djeghiour ◽  
Bachir Meziani

In this paper, we investigate an analysis of the stability of a basic flow of streaming magnetic fluids in the presence of an oblique magnetic field is made. We have use the linear analysis of modified Kelvin-Helmholtz instability by the addition of the influence of mass transfer and heat across the interface. Problems equations model is presented where nonlinear terms are neglected in model equations as well as the boundary conditions. In the case of a oblique magnetic field, the dispersion relation is obtained and discussed both analytically and numerically and the stability diagrams are also obtained. It is found that the effect of the field depends strongly on the choice of some physical parameters of the system. Regions of stability and instability are identified. It is found that the mass and heat transfer parameter has a destabilizing influence regardless of the mechanism of the field.


2020 ◽  
Vol 98 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Hina Sadaf ◽  
S. Nadeem

This paper investigates fluid motion generated by cilia and a pressure gradient in a curved channel. The flow analysis is carried out in the presence of heat transfer and radial magnetic field. The leading equations are simplified under the familiar suppositions of large wavelength and small Reynolds number approximations. An exact solution has been developed for the velocity profile. The flow characteristics of the viscous fluid are computed in the presence of cilia and metachronal wave velocity. The effects of several stimulating parameters on the flow and heat transfer are studied in detail through graphs. It is found that symmetry of the velocity profile is broken owing to bending of the channel. The radially varying magnetic field decreases the velocity field, but near the left ciliated wall it induces the opposite behavior. It is also found that velocity profile increases due to increase in buoyancy forces throughout the domain. Numerical consequences for velocity profile are also accessible in the table for diverse values of the physical parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Abdelhalim Ebaid ◽  
Fahd Al Mutairi ◽  
S. M. Khaled

In nanofluid mechanics, it has been proven recently that the no slip condition at the boundary is no longer valid which is the reason that we consider the effect of such slip condition on the flow and heat transfer of two types of nanofluids. The present paper considers the effect of the velocity slip condition on the flow and heat transfer of the Cu-water and the TiO2-water nanofluids over stretching/shrinking sheets in the presence of a magnetic field. The exact expression for the fluid velocity is obtained in terms of the exponential function, while an effective analytical procedure is suggested and successfully applied to obtain the exact temperature in terms of the generalized incomplete gamma function. It is found in this paper that the Cu-water nanofluid is slower than the TiO2-water nanofluid for both cases of the stretching/shrinking sheets. However, the temperature of the Cu-water nanofluid is always higher than the temperature of the TiO2-water nanofluid. In the case of shrinking sheet the dual solutions have been obtained at particular values of the physical parameters. In addition, the effect of various physical parameters on such dual solutions is discussed through the graphs.


Sign in / Sign up

Export Citation Format

Share Document