scholarly journals Rapid prototyping method for 3D PDMS microfluidic devices using a red femtosecond laser

2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098271
Author(s):  
Mozafar Saadat ◽  
Marie Taylor ◽  
Arran Hughes ◽  
Amir M Hajiyavand

A rapid prototyping technique is demonstrated which uses a red femtosecond laser to produce a metallic mould which is then directly used for the replica moulding of PDMS. The manufacturing process can be completed in less than 6 h making it a viable technique for testing new designs quickly. The technique is validated by creating a microfluidic device with channels of height and depth of 300 µm, with a ramp test structure where the height and width of the channels reduces to 100 µm to demonstrate the techniques 3D capabilities. The resulting PDMS device was easily removed from the metallic mould and closely replicated the shape aside the expected shrinkage during thermal curing. As the technique uses a single replica process, the surface roughness at the base of the channels corresponds to the un-ablated polished metal mould, resulting in a very low surface roughness of 0.361 nm. The ablated metallic mould surface corresponds to the top of the PDMS device, which is bonded to glass and does not affect the flow within the channels, reducing the need for optimisation of laser parameters. Finally, the device is validated by demonstrating laminar flow with the no-slip condition.

Author(s):  
Gordon D. Hoople ◽  
David A. Rolfe ◽  
Katherine C. McKinstry ◽  
Joanna R. Noble ◽  
David A. Dornfeld ◽  
...  

Recent developments in microfluidics have opened up new interest in rapid prototyping with features on the microscale. Microfluidic devices are traditionally fabricated using photolithography, however this process can be time consuming and challenging. Laser ablation has emerged as the preferred solution for rapid prototyping of these devices. This paper explores the state of rapid prototyping for microfluidic devices by comparing laser ablation to micromilling and 3D printing. A microfluidic sample part was fabricated using these three methods. Accuracy of the features and surface roughness were measured using a surface profilometer, scanning electron microscope, and optical microscope. Micromilling was found to produce the most accurate features and best surface finish down to ∼100 μm, however it did not achieve the small feature sizes produced by laser ablation. 3D printed parts, though easily manufactured, were inadequate for most microfluidics applications. While laser ablation created somewhat rough and erratic channels, the process was within typical dimensions for microfluidic channels and should remain the default for microfluidic rapid prototyping.


2004 ◽  
Vol 820 ◽  
Author(s):  
Myung-Il Park ◽  
Jun Rye Choi ◽  
Mira Park ◽  
Dae Sik Choi ◽  
Sae Chae Jeoung ◽  
...  

AbstractLaser micromachining technology with 150 femtosecond pulses is developed to fabricate glass microfluidic devices. A short theoretical analysis of femtosecond laser ablation is reported to characterize the femtosecond laser micromachining. The ablated crater diameter is measured as a function of the number of laser pulses as well as laser fluence. Two different ablation regimes are observed and the transition between the regimes is dependent on both the laser fluence and the number of laser shots. Based on the ablation phenomena described, microfluidic devices are fabricated with commercially available soda lime glasses (76 mm × 26 mm × 1 mm, Knittel Glaser, Germany). In addition to a microchannel for microfluidics, the capillary as well as optical fiber for detecting is integrated on the same substrate. The substrate is successively packaged with a lid slide glass by a thermal direct bonding. The presented developments are suitable for fast turn-around design cycle and inexpensive procedure, which provide rapid prototyping of MEMS devices.


Lab on a Chip ◽  
2009 ◽  
Vol 9 (16) ◽  
pp. 2391 ◽  
Author(s):  
Dong Wu ◽  
Qi-Dai Chen ◽  
Li-Gang Niu ◽  
Jian-Nan Wang ◽  
Juan Wang ◽  
...  

2021 ◽  
Vol 138 ◽  
pp. 106899
Author(s):  
Zhaoqing Li ◽  
Olivier Allegre ◽  
Qianliang Li ◽  
Wei Guo ◽  
Lin Li

2016 ◽  
Vol 20 (12) ◽  
Author(s):  
Antonio Liga ◽  
Jonathan A. S. Morton ◽  
Maïwenn Kersaudy-Kerhoas

2016 ◽  
Vol 64 (3) ◽  
pp. 607-614
Author(s):  
R. Barczyk ◽  
D. Jasińska-Choromańska

Abstract The paper presents studies pertaining to the quality of embossed characters of the Braille alphabet used, among other applications, for tagging drug labels. The following parameters of embossed inscriptions were measured: height, diameter of the dots and surface roughness (18 samples with various combinations of their values). 48 blind individuals assessed the quality of the printed text. Statistical analysis proved that a text with dots having height of 0.9 millimeter, diameter of 1.6 millimeters and roughness Ra of about 1 micrometer to be the best. The samples had been made using two different methods of rapid prototyping: PolyJet and SLS. 3D printing is increasingly popular and the studies proved the usefulness of these methods for labeling with embossed inscriptions, due to the repeatability, durability and quality they ensure. The assessing group of blind individuals was comprised of 24 persons 14–17 years old and other 24 persons aged over 60 who were not proficient in reading Braille alphabet, This allows to conclude that a text featuring the above values of the parameters will be easy to read for the majority of blind persons.


Sign in / Sign up

Export Citation Format

Share Document