scholarly journals Efficient hindsight reinforcement learning using demonstrations for robotic tasks with sparse rewards

2020 ◽  
Vol 17 (1) ◽  
pp. 172988141989834
Author(s):  
Guoyu Zuo ◽  
Qishen Zhao ◽  
Jiahao Lu ◽  
Jiangeng Li

The goal of reinforcement learning is to enable an agent to learn by using rewards. However, some robotic tasks naturally specify with sparse rewards, and manually shaping reward functions is a difficult project. In this article, we propose a general and model-free approach for reinforcement learning to learn robotic tasks with sparse rewards. First, a variant of Hindsight Experience Replay, Curious and Aggressive Hindsight Experience Replay, is proposed to improve the sample efficiency of reinforcement learning methods and avoid the need for complicated reward engineering. Second, based on Twin Delayed Deep Deterministic policy gradient algorithm, demonstrations are leveraged to overcome the exploration problem and speed up the policy training process. Finally, the action loss is added into the loss function in order to minimize the vibration of output action while maximizing the value of the action. The experiments on simulated robotic tasks are performed with different hyperparameters to verify the effectiveness of our method. Results show that our method can effectively solve the sparse reward problem and obtain a high learning speed.

2020 ◽  
Vol 34 (04) ◽  
pp. 3316-3323
Author(s):  
Qingpeng Cai ◽  
Ling Pan ◽  
Pingzhong Tang

Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG) has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers from high sample complexity. In this paper we consider the deterministic value gradients to improve the sample efficiency of deep reinforcement learning algorithms. Previous works consider deterministic value gradients with the finite horizon, but it is too myopic compared with infinite horizon. We firstly give a theoretical guarantee of the existence of the value gradients in this infinite setting. Based on this theoretical guarantee, we propose a class of the deterministic value gradient algorithm (DVG) with infinite horizon, and different rollout steps of the analytical gradients by the learned model trade off between the variance of the value gradients and the model bias. Furthermore, to better combine the model-based deterministic value gradient estimators with the model-free deterministic policy gradient estimator, we propose the deterministic value-policy gradient (DVPG) algorithm. We finally conduct extensive experiments comparing DVPG with state-of-the-art methods on several standard continuous control benchmarks. Results demonstrate that DVPG substantially outperforms other baselines.


2020 ◽  
Vol 14 (1) ◽  
pp. 117-150
Author(s):  
Alberto Maria Metelli ◽  
Matteo Pirotta ◽  
Marcello Restelli

Reinforcement Learning (RL) is an effective approach to solve sequential decision making problems when the environment is equipped with a reward function to evaluate the agent’s actions. However, there are several domains in which a reward function is not available and difficult to estimate. When samples of expert agents are available, Inverse Reinforcement Learning (IRL) allows recovering a reward function that explains the demonstrated behavior. Most of the classic IRL methods, in addition to expert’s demonstrations, require sampling the environment to evaluate each reward function, that, in turn, is built starting from a set of engineered features. This paper is about a novel model-free IRL approach that does not require to specify a function space where to search for the expert’s reward function. Leveraging on the fact that the policy gradient needs to be zero for an optimal policy, the algorithm generates an approximation space for the reward function, in which a reward is singled out employing a second-order criterion. After introducing our approach for finite domains, we extend it to continuous ones. The empirical results, on both finite and continuous domains, show that the reward function recovered by our algorithm allows learning policies that outperform those obtained with the true reward function, in terms of learning speed.


2021 ◽  
Vol 35 (2) ◽  
Author(s):  
Pallavi Bagga ◽  
Nicola Paoletti ◽  
Bedour Alrayes ◽  
Kostas Stathis

AbstractWe present a novel negotiation model that allows an agent to learn how to negotiate during concurrent bilateral negotiations in unknown and dynamic e-markets. The agent uses an actor-critic architecture with model-free reinforcement learning to learn a strategy expressed as a deep neural network. We pre-train the strategy by supervision from synthetic market data, thereby decreasing the exploration time required for learning during negotiation. As a result, we can build automated agents for concurrent negotiations that can adapt to different e-market settings without the need to be pre-programmed. Our experimental evaluation shows that our deep reinforcement learning based agents outperform two existing well-known negotiation strategies in one-to-many concurrent bilateral negotiations for a range of e-market settings.


Author(s):  
Feng Pan ◽  
Hong Bao

This paper proposes a new approach of using reinforcement learning (RL) to train an agent to perform the task of vehicle following with human driving characteristics. We refer to the ideal of inverse reinforcement learning to design the reward function of the RL model. The factors that need to be weighed in vehicle following were vectorized into reward vectors, and the reward function was defined as the inner product of the reward vector and weights. Driving data of human drivers was collected and analyzed to obtain the true reward function. The RL model was trained with the deterministic policy gradient algorithm because the state and action spaces are continuous. We adjusted the weight vector of the reward function so that the value vector of the RL model could continuously approach that of a human driver. After dozens of rounds of training, we selected the policy with the nearest value vector to that of a human driver and tested it in the PanoSim simulation environment. The results showed the desired performance for the task of an agent following the preceding vehicle safely and smoothly.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1890 ◽  
Author(s):  
Zijian Hu ◽  
Kaifang Wan ◽  
Xiaoguang Gao ◽  
Yiwei Zhai ◽  
Qianglong Wang

Autonomous motion planning (AMP) of unmanned aerial vehicles (UAVs) is aimed at enabling a UAV to safely fly to the target without human intervention. Recently, several emerging deep reinforcement learning (DRL) methods have been employed to address the AMP problem in some simplified environments, and these methods have yielded good results. This paper proposes a multiple experience pools (MEPs) framework leveraging human expert experiences for DRL to speed up the learning process. Based on the deep deterministic policy gradient (DDPG) algorithm, a MEP–DDPG algorithm was designed using model predictive control and simulated annealing to generate expert experiences. On applying this algorithm to a complex unknown simulation environment constructed based on the parameters of the real UAV, the training experiment results showed that the novel DRL algorithm resulted in a performance improvement exceeding 20% as compared with the state-of-the-art DDPG. The results of the experimental testing indicate that UAVs trained using MEP–DDPG can stably complete a variety of tasks in complex, unknown environments.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 77 ◽  
Author(s):  
Juan Chen ◽  
Zhengxuan Xue ◽  
Daiqian Fan

In order to solve the problem of vehicle delay caused by stops at signalized intersections, a micro-control method of a left-turning connected and automated vehicle (CAV) based on an improved deep deterministic policy gradient (DDPG) is designed in this paper. In this paper, the micro-control of the whole process of a left-turn vehicle approaching, entering, and leaving a signalized intersection is considered. In addition, in order to solve the problems of low sampling efficiency and overestimation of the critic network of the DDPG algorithm, a positive and negative reward experience replay buffer sampling mechanism and multi-critic network structure are adopted in the DDPG algorithm in this paper. Finally, the effectiveness of the signal control method, six DDPG-based methods (DDPG, PNRERB-1C-DDPG, PNRERB-3C-DDPG, PNRERB-5C-DDPG, PNRERB-5CNG-DDPG, and PNRERB-7C-DDPG), and four DQN-based methods (DQN, Dueling DQN, Double DQN, and Prioritized Replay DQN) are verified under 0.2, 0.5, and 0.7 saturation degrees of left-turning vehicles at a signalized intersection within a VISSIM simulation environment. The results show that the proposed deep reinforcement learning method can get a number of stops benefits ranging from 5% to 94%, stop time benefits ranging from 1% to 99%, and delay benefits ranging from −17% to 93%, respectively compared with the traditional signal control method.


Author(s):  
Shihui Li ◽  
Yi Wu ◽  
Xinyue Cui ◽  
Honghua Dong ◽  
Fei Fang ◽  
...  

Despite the recent advances of deep reinforcement learning (DRL), agents trained by DRL tend to be brittle and sensitive to the training environment, especially in the multi-agent scenarios. In the multi-agent setting, a DRL agent’s policy can easily get stuck in a poor local optima w.r.t. its training partners – the learned policy may be only locally optimal to other agents’ current policies. In this paper, we focus on the problem of training robust DRL agents with continuous actions in the multi-agent learning setting so that the trained agents can still generalize when its opponents’ policies alter. To tackle this problem, we proposed a new algorithm, MiniMax Multi-agent Deep Deterministic Policy Gradient (M3DDPG) with the following contributions: (1) we introduce a minimax extension of the popular multi-agent deep deterministic policy gradient algorithm (MADDPG), for robust policy learning; (2) since the continuous action space leads to computational intractability in our minimax learning objective, we propose Multi-Agent Adversarial Learning (MAAL) to efficiently solve our proposed formulation. We empirically evaluate our M3DDPG algorithm in four mixed cooperative and competitive multi-agent environments and the agents trained by our method significantly outperforms existing baselines.


2020 ◽  
Vol 12 (22) ◽  
pp. 3789
Author(s):  
Bo Li ◽  
Zhigang Gan ◽  
Daqing Chen ◽  
Dyachenko Sergey Aleksandrovich

This paper combines deep reinforcement learning (DRL) with meta-learning and proposes a novel approach, named meta twin delayed deep deterministic policy gradient (Meta-TD3), to realize the control of unmanned aerial vehicle (UAV), allowing a UAV to quickly track a target in an environment where the motion of a target is uncertain. This approach can be applied to a variety of scenarios, such as wildlife protection, emergency aid, and remote sensing. We consider a multi-task experience replay buffer to provide data for the multi-task learning of the DRL algorithm, and we combine meta-learning to develop a multi-task reinforcement learning update method to ensure the generalization capability of reinforcement learning. Compared with the state-of-the-art algorithms, namely the deep deterministic policy gradient (DDPG) and twin delayed deep deterministic policy gradient (TD3), experimental results show that the Meta-TD3 algorithm has achieved a great improvement in terms of both convergence value and convergence rate. In a UAV target tracking problem, Meta-TD3 only requires a few steps to train to enable a UAV to adapt quickly to a new target movement mode more and maintain a better tracking effectiveness.


2019 ◽  
Author(s):  
Momchil S. Tomov ◽  
Eric Schulz ◽  
Samuel J. Gershman

ABSTRACTThe ability to transfer knowledge across tasks and generalize to novel ones is an important hallmark of human intelligence. Yet not much is known about human multi-task reinforcement learning. We study participants’ behavior in a novel two-step decision making task with multiple features and changing reward functions. We compare their behavior to two state-of-the-art algorithms for multi-task reinforcement learning, one that maps previous policies and encountered features to new reward functions and one that approximates value functions across tasks, as well as to standard model-based and model-free algorithms. Across three exploratory experiments and a large preregistered experiment, our results provide strong evidence for a strategy that maps previously learned policies to novel scenarios. These results enrich our understanding of human reinforcement learning in complex environments with changing task demands.


Author(s):  
Wenjie Shi ◽  
Shiji Song ◽  
Cheng Wu

Maximum entropy deep reinforcement learning (RL) methods have been demonstrated on a range of challenging continuous tasks. However, existing methods either suffer from severe instability when training on large off-policy data or cannot scale to tasks with very high state and action dimensionality such as 3D humanoid locomotion. Besides, the optimality of desired Boltzmann policy set for non-optimal soft value function is not persuasive enough. In this paper, we first derive soft policy gradient based on entropy regularized expected reward objective for RL with continuous actions. Then, we present an off-policy actor-critic, model-free maximum entropy deep RL algorithm called deep soft policy gradient (DSPG) by combining soft policy gradient with soft Bellman equation. To ensure stable learning while eliminating the need of two separate critics for soft value functions, we leverage double sampling approach to making the soft Bellman equation tractable. The experimental results demonstrate that our method outperforms in performance over off-policy prior methods.


Sign in / Sign up

Export Citation Format

Share Document