scholarly journals Split chimeric antigen receptor-modified T cells targeting glypican-3 suppress hepatocellular carcinoma growth with reduced cytokine release

2020 ◽  
Vol 12 ◽  
pp. 175883592091034 ◽  
Author(s):  
Xuan Liu ◽  
Jianyun Wen ◽  
Honglei Yi ◽  
Xiaorui Hou ◽  
Yue Yin ◽  
...  

Background: Human glypican-3 (hGPC3) is a protein highly expressed in hepatocellular carcinoma (HCC) but limited in normal tissues, making it an ideal target for immunotherapy. The adoptive transfer of hGPC3-specific chimeric antigen receptor T (CAR-T) cells for HCC treatment has been conducted in clinical trials. Due to the rigid construction, conventional CAR-T cells have some intrinsic limitations, like uncontrollable overactivation and inducing severe cytokine release syndrome. Methods: We redesigned the hGPC3-specific CAR by splitting the traditional CAR into two parts. By using coculturing assays and a xenograft mouse model, the in vitro and in vivo cytotoxicity and cytokine release of the split anti-hGPC3 CAR-T cells were evaluated against various HCC cell lines and compared with conventional CAR-T cells. Results: In vitro data demonstrated that split anti-hGPC3 CAR-T cells could recognize and lyse hGPC3+ HepG2 and Huh7 cells in a dose-dependent manner. Impressively, split anti-hGPC3 CAR-T cells produced and released a significantly lower amount of proinflammatory cytokines, including IFN-γ, TNF-α, IL-6, and GM-CSF, than conventional CAR-T cells. When injected into immunodeficient mice inoculated subcutaneously with HepG2 cells, our split anti-hGPC3 CAR-T cells could suppress HCC tumor growth, but released significantly lower levels of cytokines than conventional CAR-T cells. Conclusions: We describe here for the first time the use of split anti-hGPC3 CAR-T cells to treat HCC; split anti-hGPC3 CAR-T cells could suppress tumor growth and reduce cytokine release, and represent a more versatile and safer alternative to conventional CAR-T cells treatment.

2020 ◽  
Author(s):  
Liqing Kang ◽  
Jian Zhang ◽  
Minghao Li ◽  
Nan Xu ◽  
Wei Qi ◽  
...  

Abstract Background: Treatment with chimeric antigen receptor (CAR)-engineered T cells directed against the B-cell maturation antigen (BCMA) promoted transient recovery from multiple myeloma (MM). However, the absence of this antigen on immature plasma cells may limit the efficacy of this modality and facilitate relapse. The purpose of this study is to characterize a novel CAR that includes both a single-chain variable fragment (scFv)-BCMA and an scFv-CD19 in tandem orientation (tan-CAR) in an attempt to target both BCMA and CD19 expression on MM cells. Method: The scFv sequences from the anti-CD19 antibody FMC63 and the anti-BCMA antibody C11D5.3 were ligated in tandem with transmembrane and T-cell signaling domains to generate the tan-CAR construct. Specificity and efficacy of activated tan-CAR T cells were analyzed using in vitro proliferation, cytokine release, and cytolysis assays. We also evaluated the in vivo efficacy with a xenograft mouse model that included target tumor cells that expressed CD19 or BCMA and compared the results to those obtained with conventional CAR T cells. Results: The in vitro studies revealed specific activation of tan-CAR T cells by K562 cells that overexpressed CD19 and/or BCMA. Cell proliferation, cytokine release, and cytolytic activity were all comparable to the responses of single scFv CAR T cells. Importantly, in vivo studies of tan-CAR T cells revealed specific inhibition of tumor growth in the mouse xenograft model that included cells expressing both CD19 and BCMA. Systemic administration of tan-CAR T cells resulted in complete tumor remission, in contrast to the reduced efficacies of BCMA-CAR T and CD19-CAR T alone in this setting. Conclusion: We report the successful design and execution of novel tan-CAR T cells that promote significant anti-tumor efficacy against both CD19 and BCMA antigen-positive tumor cells in vitro and in vivo . The data from this study reveal a novel strategy that may help to reduce the rate of relapse in the treatment with single scFv-CAR T cells.


2020 ◽  
Author(s):  
Liqing Kang ◽  
Jian Zhang ◽  
Minghao Li ◽  
Nan Xu ◽  
Wei Qi ◽  
...  

Abstract Background: Chimeric antigen receptor (CAR) engineered T cells directed B cell maturation antigen (BCMA) showed transient recovery to multiple myeloma (MM). However, the expression of CD19 on immature plasma cell may escape the recognition by BCMA-CAR T, which restrict the efficacy and facilitate to relapse. The purpose of this study is to characterize a novel CAR structure with a tandem orientation of scFv-BCMA and scFv-CD19, tandem CAR (tan-CAR), to provide an effective solution for killing both BCMA and/or CD19 expression MM cells.Method: Single-chain variable fragment (scFv) sequences from the anti-CD19 antibody FMC63 and the anti-BCMA antibody C11D5.3 were ligated in tandem with transmembrane and T cell signaling domains to achieve tan-CAR construct. The therapeutic specificity and efficiency were analyzed for tan-CAR T cells activation, proliferation, cytokine release and cytolytic toxicity in vitro. Also, in vivo efficacy evaluation conducted in xenograft mouse models with the combination of two corresponding target tumor cells, in comparison with conventional CAR.Results: The in vitro studies demonstrated specific activation of tan-CAR T cells to the K562 tumor cell overexpressing CD19, BCMA, or both. Besides, it also elicits the comparable immunoreactivities, in terms of proliferation, cytokine release and cytolytic activity compared to single scFv modified CAR T cells. Importantly, the in vivo studies of tan-CAR-transduced T cells results specific inhibition of tumor growth in xenograft model that express combined tumor antigen i.e. CD19 and BCMA. Moreover, systemic administration of tan-CAR resulted in complete tumor remission, whilst neither BCMA-CAR T nor CD19-CAR-T could. Conclusion: A novel tan-CAR T was successfully designed and showed the significant antitumor efficacy for combined antigen-positive tumor cells in vitro and in vivo. However, the single CAR T cells with targeting one antigen didn’t achieve similar potency. The data from this study suggest a novel strategy to help reduce relapse due to existing CD19-expressing multiple myeloma cells or downregulation of the BCMA antigen after CAR-based treatment of multiple myeloma.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248973
Author(s):  
Nami Iwamoto ◽  
Bhavik Patel ◽  
Kaimei Song ◽  
Rosemarie Mason ◽  
Sara Bolivar-Wagers ◽  
...  

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Matthew T. Ollerton ◽  
Edward A. Berger ◽  
Elizabeth Connick ◽  
Gregory F. Burton

ABSTRACT The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-γ) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought. IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro. Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV.


2021 ◽  
Author(s):  
Katherine Mueller ◽  
Nicole Piscopo ◽  
Matthew Forsberg ◽  
Louise Saraspe ◽  
Amritava Das ◽  
...  

Chimeric antigen receptor (CAR) T cells traditionally harbor viral vectors that encode the CAR transgene in the genome. However, viral vector manufacturing typically is resource intensive, suffers from batch-to-batch variability, and includes several animal components, adding regulatory and supply chain pressures. Here, CAR T cells were generated within nine days using recombinant SpCas9 protein and nucleic acids, without any viral vectors or animal components. In comparison to traditional retroviral CAR T cells, nonviral CRISPR CAR T cells exhibit TRAC-targeted genomic integration of the CAR transgene, higher frequency of gene expression signatures associated with a memory phenotype, low receptor signaling prior to infusion, and potent cytotoxicity against GD2+ neuroblastoma in vitro and in vivo. This proof-of-principle study eliminating viral vectors and animal components during CAR gene transfer could enable more flexible and scalable manufacturing of clinically-relevant, high-quality CAR T cells to treat cancers, including solid tumors.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3354-3354
Author(s):  
Hong Liu ◽  
Li Long ◽  
Shon Green ◽  
Lucas H Horan ◽  
Bryan Zimdahl ◽  
...  

Abstract Anti-CD19 chimeric antigen receptor (CAR) T cell therapies for B cell malignancies have demonstrated the remarkable curative potential of T cell immunotherapies. However, in clinical trials anti-CD19-CAR T cells continue to trigger life threatening adverse events that are often associated with excessive cytokine release and excessive T-cell proliferation. We reasoned that the activation pathway of current CAR T cells could be altered to better regulate proliferation and cytokine secretion, and thus disentangle the correlation between cytokine release syndrome (CRS) and efficacy of T cell-based therapies. Through protein engineering, we developed the ARTEMISTM (1) signaling platform which when expressed on primary T-cells results in a dramatic reduction of cytokine release during tumor cell lysis, without sacrificing efficacy. Using a human phage display library, we also identified several human CD19 antibodies with improved specificity and affinity that will be less immunogenic as compared to the murine-derived anti-CD19 antibodies that are currently used in most trials. Our lead antibody clone CD19(7) was then engineered into both CD28z-CAR and ARTEMISTM platforms for comparison. When tested in vitro, both CD19(7)-ARTEMISTM T cells and CD19(7)-CD28z-CAR T cells specifically lysed multiple CD19+ leukemia and lymphoma cell lines with similar potencies. However, during the 16 hour killing assays, ARTEMIS™ T cells secreted over 1000-fold less IL-2 and dramatically lower levels of IFN-γ, GM-CSF, IL-10 and IL-6. ARTEMISTM T cells also accumulated less PD-1, LAG3, and TIM3 on their surface during culturing and following in vitro killing, indicating a diminished propensity for exhaustion. Furthermore, during in vitro T cell expansion, ARTEMISTM cells were enriched for naïve/central memory subpopulations, had lower expression of granzyme B, a marker of terminal differentiation, and had reduced rates of receptor internalization upon antigen engagement. These characteristics suggest that T-cells activated through the ARTEMISTM receptor will have improved persistence and long-term proliferation potential, as well as a safer, more controlled cytokine release when used for T-cell therapies. When tested in vivo against CD19+ Raji systematic lymphoma xenografts, intravenous administration of CD19(7)-ARTEMISTM T cells caused rapid, complete, and lasting tumor regression that was better than that achieved with an equal dose of CD19(7)-CD28z-CAR T cells (Figure 1). In agreement with our in vitro data, mice treated with ARTEMISTM T cells had nearly undetectable levels of cytokines in their blood at 24 hours post dosing, a time in which CD19(7)-CAR-treated mice had markedly elevated levels of human IFN-γ, IL-2, TNFα, and IL-10. While flow cytometry analysis of the peripheral blood showed that CD19(7)-CAR T cells expanded more rapidly in mice, CD19(7)-ARTEMISTM T cells better controlled Raji tumor growth and were negative for PD-1 expression which was high on circulating CAR T cells. At 7 weeks post dosing, a time when all ARTEMISTM T cell-treated mice had no detectable tumors, they were re-challenged with Raji lymphoma. While tumors grew rapidly in control mice, ARTEMISTM T cell-treated mice resisted the Raji lymphoma re-challenge, indicating that ARTEMISTM T cells persisted in these mice despite the absence of tumors and remained antigen-responsive (Figure 2). Our data demonstrates that CD19(7)-ARTEMISTM T cells are highly potent against lymphoma preclinical models while releasing drastically lower levels of cytokines. Thus we have developed and pre-clinically validated a novel fully human anti-CD19 T cell therapy that has the potential to persist longer in patients and, importantly, presents a lower risk of cytokine-related toxicities without compromising efficacy. A clinical trial testing CD19(7)-ARTEMISTM T cell therapy in humans is expected to begin in 2017. Figure 1 Raji lymphoma tumor growth in NSG mice treated with either donor-matched untransduced T cells (Mock), CD19(7)-CAR, or CD19(7)-ARTEMISTM T cells (5x106 receptor-positive cells per mouse) Figure 1. Raji lymphoma tumor growth in NSG mice treated with either donor-matched untransduced T cells (Mock), CD19(7)-CAR, or CD19(7)-ARTEMISTM T cells (5x106 receptor-positive cells per mouse) Figure 2 Raji lymphoma tumor growth in NSG mice previously treated with CD19(7)-ARTEMISTM T cells who had complete regression (0.5x106 Raji cells/mouse). As controls, Raji-naïve mice were implanted with Raji cells following an injection of Mock T cells. (1)ARTEMISTM is trademarked by Eureka Therapeutics, Inc. Figure 2. Raji lymphoma tumor growth in NSG mice previously treated with CD19(7)-ARTEMISTM T cells who had complete regression (0.5x106 Raji cells/mouse). As controls, Raji-naïve mice were implanted with Raji cells following an injection of Mock T cells. / (1)ARTEMISTM is trademarked by Eureka Therapeutics, Inc. Disclosures Liu: Eureka Therapeutics: Employment, Equity Ownership, Patents & Royalties. Long:Eureka Therapeutics: Employment, Equity Ownership. Green:Eureka Therapeutics: Employment. Horan:Eureka Therapeutics: Employment. Zimdahl:Eureka Therapeutics: Employment. Liu:Eureka Therapeutics: Employment, Equity Ownership, Patents & Royalties.


Author(s):  
Bill X. Wu ◽  
No-Joon Song ◽  
Brian P. Riesenberg ◽  
Zihai Li

Abstract The use of chimeric antigen receptor (CAR) T cell technology as a therapeutic strategy for the treatment blood-born human cancers has delivered outstanding clinical efficacy. However, this treatment modality can also be associated with serious adverse events in the form of cytokine release syndrome. While several avenues are being pursued to limit the off-target effects, it is critically important that any intervention strategy has minimal consequences on long term efficacy. A recent study published in Science Translational Medicine by Dr. Hudecek’s group proved that dasatinib, a tyrosine kinase inhibitor, can serve as an on/off switch for CD19-CAR-T cells in preclinical models by limiting toxicities while maintaining therapeutic efficacy. In this editorial, we discuss the recent strategies for generating safer CAR-T cells, and also important questions surrounding the use of dasatinib for emergency intervention of CAR-T cell mediated cytokine release syndrome.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A149-A149
Author(s):  
Yuan Qin ◽  
Anna Qin ◽  
Anna Musket ◽  
Joseph Lee ◽  
Zhi Yao ◽  
...  

BackgroundHepatocellular carcinoma (HCC) is the leading cause of cancer mortality worldwide. While HBV/HCV infection is the primary cause of HCC, overexpression of MET, the receptor of hepatocyte growth factor (HGF), occurs in 50% HCC patients, and is an indicator of poor prognosis. Although the multi-target MET tyrosine kinase inhibitor cabozantinib is FDA approved for treating advanced HCC, the long-term efficacy versus toxicity remains unknown. Our study is to develop specific MET-targeting chimeric antigen receptor T (CAR-T) cells for treating HCC with MET overexpression.MethodsBased on a well-established anti-MET monoclonal antibody, we synthesized and cloned the single-chain variable fragment (ScFv) sequence into two retroviral based 2nd generation CAR vectors (MET-CAR.CD28.ζ. and MET-CAR.4-1BB.ζ.). A MET-CAR without CD3ζ domain (MET-CARΔ) served as a negative control. To produce MET-CAR-T cells, healthy PBMCs were stimulated with anti-CD3/CD28 antibodies in the presence of IL-7/IL-15 followed by transduction with MET-CAR viral particles. T cell transduction efficacy was determined using flow cytometry. HCC cell lines with variable MET expression from high/positive (MHCC97H, C3A, and JHH5) to MET low/negative (SNU398) were used to determine MET-specific CAR T cells specificity and effector function using MTS assay. We also collected media from the tumor-T cell co-cultures and determined IL-2 and IFNγ secretion using ELISA. Finally, real-time confocal imaging (24 h) was performed to record the progress of MET-CAR T cell mediated killing activity against MHCC97H/mCherry cells.ResultsWe show that both MET-CAR.CD28.ζ and MET-CAR.4-1BB.ζ -T cells significantly killed MHCC97H, C3A, and JHH5 cells in antigen dependent manner. MET-CAR T cell killing is MET dependent as we observed no killing of MET-negative SNU398 cells. In addition, MET-CAR.4-1BB.ζ and MET-CAR.CD28.ζ- T cells secreted IL-2 and IFNγ when co-cultured with MHCC97H, C3A, JHH5 cells, but not SNU398. Confocal imaging studies showed that both MET-specific CAR T cells migrated toward MHCC97H/mCherry cells, formed aggregations, and induced tumor cell death, while MET-CARΔ T cells failed to do so.ConclusionsHere we demonstrate that MET-CAR.4-1BB.ζ and MET-CAR.CD28.ζ- T cells specifically recognize and kill MET-positive HCC cells in vitro. While animal studies are required to validate the efficacy in vivo, our study has produced a novel therapeutic CAR T cell target for treating malignant HCC and other type of cancers with MET overexpression.AcknowledgementsThis independent research was supported by the Gilead Sciences Research Scholars Program in Liver Disease- The Americas, and Department of Defense (DoD) Ideal Award (to QX)Ethics ApprovalThe study was approved by East Tennessee State University’s Ethics Board, approval number #0619.3s.


2021 ◽  
Author(s):  
Hong Jia Zhu ◽  
Yujie Jia ◽  
Jingwen Tan ◽  
Xiaoyan Fang ◽  
Jing Ye ◽  
...  

Abstract Purpose: Chimeric antigen receptor (CAR) T cell therapy has demonstrated clinical success in treating haematologic malignancies but has not been effective against solid tumours thus far. Trop2 is a tumour-related antigen broadly overexpressed on a variety of tumours and has been reported as a promising target for pancreatic cancers. Our study aimed to determine whether CAR T cells designed with a fully human Trop2-specific single-chain fragment variable (scFv) can be used in the treatment of Trop2-positive pancreatic tumours.Methods: We designed Trop2-targeted chimeric antigen receptor engineered T cells with a novel human anti-Trop2 scFv (2F11) and then investigated the cytotoxicity, degranulation, and cytokine secretion profiles of the anti-Trop2 CAR T cells when they were exposed to Trop2+ cancer cells in vitro. We also studied the antitumour efficacy and toxicity of Trop2-specific CAR T cells in vivo using a BxPC-3 pancreatic xenograft model.Results: Trop2-targeted CAR T cells designed with 2F11 effectively killed Trop2-positive pancreatic cancer cells and produced high levels of cytotoxic cytokines in vitro. In addition, Trop2-targeted CAR T cells, which persistently circulate in vivo and efficiently infiltrate into tumour tissues, significantly blocked and even eliminated BxPC-3 pancreatic xenograft tumour growth without obvious deleterious effects observed after intravenous injection into NSG mice. Moreover, disease-free survival was efficiently prolonged.Conclusion: These results show that Trop2-targeted CAR T cells equipped with a fully human anti-Trop2 scFv could be a potential treatment strategy for pancreatic cancer and could be useful for clinical evaluation.


Sign in / Sign up

Export Citation Format

Share Document