scholarly journals Single Crystal X-ray Diffraction, Spectroscopic and Mass Spectrometric Studies of Furanocoumarin Peucedanin

2014 ◽  
Vol 9 (1) ◽  
pp. 1934578X1400900
Author(s):  
Magdalena Bartnik ◽  
Marta Arczewska ◽  
Anna A. Hoser ◽  
Tomasz Mroczek ◽  
Daniel M. Kamiński ◽  
...  

The structure of peucedanin, isolated from Peucedanum tauricum Bieb. (Apiaceae), has been established using single crystal X-ray diffraction. This furanocoumarin isolated from the light petroleum extract of P. tauricum fruits was characterized by high resolution EI-MS, sATR-FTIR and 2D NMR spectroscopic techniques. The EI-MS showed the typical fragmentation pattern of methoxyfuranocoumarins. Extensive 1D (1H and 13C) as well as 2D NMR data enabled complete assignment of the carbon atoms in the peucedanin molecule. The FTIR data confirms intermolecular hydrogen bonding between peucedanin molecules in polar solvents. Peucedanin crystallises in the R-3 space group from the trigonal system with one molecule in the asymmetric part of the unit cell. The crystal lattice of peucedanin consists of the molecules arranged in separate columns. They are related by two fold screw axes and centres of symmetry. Interestingly, peucedanin columns form two channels per unit cell with a diameter of 7.5Å going through the crystal lattice in the Z-direction. These channels are filled with disordered water molecules, which are surrounded by hydrophobic methyl groups and are located exactly at the centres of the channels. The peucedanin molecules are stacked in a single column with the opposite orientation of the neighbouring molecules. These results could be interesting in further application of this molecule, for example in biological tests of its activity.

1999 ◽  
Vol 23 (7) ◽  
pp. 418-419
Author(s):  
Simon J. Coles ◽  
Paul Faulds ◽  
Michael B. Hursthouse ◽  
David G. Kelly ◽  
Georgia C. Ranger ◽  
...  

Nickel(II) phosphine complexes are prepared with a series of diphenylalkenylphosphine ligands and characterised by single crystal X-ray diffraction and spectroscopic techniques.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1560-C1560
Author(s):  
Fumiko Kimura ◽  
Wataru Oshima ◽  
Hiroko Matsumoto ◽  
Hidehiro Uekusa ◽  
Kazuaki Aburaya ◽  
...  

In pharmaceutical sciences, the crystal structure is of primary importance because it influences drug efficacy. Due to difficulties of growing a large single crystal suitable for the single crystal X-ray diffraction analysis, powder diffraction method is widely used. In powder method, two-dimensional diffraction information is projected onto one dimension, which impairs the accuracy of the resulting crystal structure. To overcome this problem, we recently proposed a novel method of fabricating a magnetically oriented microcrystal array (MOMA), a composite in which microcrystals are aligned three-dimensionally in a polymer matrix. The X-ray diffraction of the MOMA is equivalent to that of the corresponding large single crystal, enabling the determination of the crystal lattice parameters and crystal structure of the embedded microcrytals.[1-3] Because we make use of the diamagnetic anisotropy of crystal, those crystals that exhibit small magnetic anisotropy do not take sufficient three-dimensional alignment. However, even for these crystals that only align uniaxially, the determination of the crystal lattice parameters can be easily made compared with the determination by powder diffraction pattern. Once these parameters are determined, crystal structure can be determined by X-ray powder diffraction method. In this paper, we demonstrate possibility of the MOMA method to assist the structure analysis through X-ray powder and single crystal diffraction methods. We applied the MOMA method to various microcrystalline powders including L-alanine, 1,3,5-triphenyl benzene, and cellobiose. The obtained MOMAs exhibited well-resolved diffraction spots, and we succeeded in determination of the crystal lattice parameters and crystal structure analysis.


Synthesis ◽  
2021 ◽  
Author(s):  
Nilo Zanatta ◽  
Lucimara L Zachow ◽  
Mateus Mittersteiner ◽  
Estefania da Costa Aquino ◽  
Helio G Bonacorso ◽  
...  

In this work, the reactivity of 5-bromo-1,1,1-trifluoro-4-methoxypent-3-en-2-one toward primary aliphatic amines was studied. The reaction was found to be extremely selective to synthesize a series of 1-alkyl-4-aminoalkyl-2-trifluoromethyl-1H-pyrroles (13 examples, at yields up to 90%) and a series of highly functionalized β-enaminones (6 examples, at yields up to 78%), with only the amount of amine and the reaction condition needing to be controlled. The structure of the products was unambiguously determined by single crystal X-ray diffraction and 2D NMR experiments.


2017 ◽  
Vol 12 (11) ◽  
pp. 1934578X1701201
Author(s):  
Qiao Xu ◽  
Miao-Miao Zhang ◽  
Shu-Zhen Yana ◽  
Lu-Fen Cao ◽  
Qiang Lia ◽  
...  

Two symmetrical dibenzoquinone derivatives were isolated from solid cultures of the fungus Acremonium cavaraeanum. Compound 1 was new and identified as 2,7-dihydroxy-3,6,9-trimethyl-9 H-xanthene-1,4,5,8-tetraone. Compound 2 was 3,3’,6,6’-tetrahydroxy-4,4’-dimethyl-1,1’-bi- p-benzoquinone, i.e. oosporein, which was reported from A. cavaraeanum for the first time. The structure of the dibenzoquinone (1) was unambiguously elucidated using a combination of MS, IR, 1D- and 2D-NMR, and the dibenzoquinone (2) was further determined by single-crystal X-ray diffraction.


2018 ◽  
Vol 74 (11) ◽  
pp. 1440-1446
Author(s):  
Qi Zhang ◽  
Li Ma ◽  
Zhaoxia Qu ◽  
Guige Hou ◽  
Yanan Wang ◽  
...  

Two new isodaucane-type sesquiterpenoids, namely (1R,4S,5S,6R,7S,10R)-isodauc-6,7,10-triol, C15H28O3, (1), and (1R,4S,5S,6S,7S,10R)-isodauc-6,7,10-triol, (2), and a new eudesmane-type sesquiterpenoid, 1β,4β,5α-trihydroxyeudesmane, (3), were obtained from the rhizomes of homalomena occulta with the aid of column chromatography. Their structures were elucidated based on extensive spectroscopic analyses, including 1D NMR, 2D NMR and HRESIMS. The structure of (1) was confirmed by single-crystal X-ray diffraction and the absolute configuration was assigned with respect to that of the precursor. The single-crystal structure reveals that adjacent molecules of (1) embrace through two groups of intermolecular O—H...O hydrogen bonds to generate a two-dimensional sheet with a 63-net topology. The three compounds were evaluated for their activity against lipopolysaccharide-induced production of nitrogen oxide (NO) in RAW 264.7 cells, and (1) showed an inhibitory effect on NO production, with IC50 values of 5.7±0.22 µM.


2007 ◽  
Vol 71 (5) ◽  
pp. 579-585 ◽  
Author(s):  
A. Guastoni ◽  
F. Nestola ◽  
G. Mazzoleni ◽  
P. Vignola

AbstractMn-rich graftonite, (Ca,Mn2+)(Fe2+,Mn2+)2(PO4)2, ferrisicklerite, Li1–x(Fe3+,Mn2+)PO4, manganoan apatite, (Ca,Mn2+,Fe2+Mg)(PO4)3Cl, staně kite, Fe3+Mn2+O(PO4) and Mn-rich vivianite, (Fe2+)3(PO4)2·8H2O, occurring in a granitic pegmatite at Soè Valley (central Alps, Italy) were characterized by powder and single-crystal X-ray diffraction (XRD) and electron microprobe analyses. Geochemically, the Mn-rich graftonite phases are poorly evolved Fe/Mn-phosphates of rare-earth elements-lithium (REE-Li) granitic pegmatites. The assemblage Mn-rich graftonite + ferrisicklerite + staněkite has rarely beendocumen ted in pegmatites. Inthe Soè Valley pegmatite, ferrisicklerite forms exsolution lamellae with Mn-rich graftonite associated with manganoan apatite and staněkite. Graftonite is associated with Mn-rich vivianite. Powder and single-crystal XRD data indicate that the unit-cell volume of graftonite increases as a function of Mn2+content. Staněkite shows a distinctly smaller unit-cell volume with respect to previously reported staněkites, probably due to reduced Mn2+. Vivianite with significant Mn2+has a unit-cell volume similar to nearly Mn-free vivianite. The formation of Mn-rich graftonite and manganoan apatite is related to destabilization of Mn-rich almandine and biotite during pegmatite formation. Ferrisicklerite forms exsolution lamellae along the 010 cleavage planes of Mn-rich graftonite, whereas staněkite forms by alterationof ferrisicklerite and Mn-rich vivianite due to circulation of late-stage hydrothermal fluids.


1995 ◽  
Vol 50 (4) ◽  
pp. 699-701 ◽  
Author(s):  
Norbert W. Mitzel ◽  
Jürgen Riede ◽  
Klaus Angermaier ◽  
Hubert Schmidbaur

The solid-state structure of N,N-dibenzylhydroxylamine (1) has been determined by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P 21/n with four formula units in the unit cell. N,N-dibenzylhydroxylamine dimerizes to give N2O2H2 sixmembered rings as a result of the formation of two hydrogen bonds O - H ··· N in the solid state.


1996 ◽  
Vol 52 (1) ◽  
pp. 140-144 ◽  
Author(s):  
H. van Koningsveld ◽  
J. C. Jansen ◽  
H. van Bekkum

The crystal structure of a high-loaded complex of H-ZSM-5 with eight molecules of p-dichlorobenzene per unit cell has been solved by single-crystal X-ray diffraction. The orthorhombic space group P212121 with a = 20.102 (6), b = 19.797 (9), c = 13.436 (3) Å and V = 5347 (3) Å3 has four Si23.92Al0.08O48.2C6H4Cl2 units per unit cell. Dx = 2.164 Mg m−3, λ(MoKα) = 0.71073 Å and μ(Mo Kα) = 0.876 mm−1. The final R(wR) = 0.046 (0.039), w = 1/σ 2(F), for 6090 observed reflections with I > 1.0σ(I) measured at 293 K. The straight channel parallel to [010] is slightly corrugated. The elliptical cross sections have limiting apertures of 6.0 × 4.9 Å (r oxygen = 1.35 Å). The sinusoidal channel parallel to [100] is elliptical with major and minor axes of 6.1 × 4.8 Å, respectively. One of the two independent p-dichlorobenzene molecule lies at the intersection of the straight and sinusoidal channels with its long molecular axis almost parallel to (100) and deviating ~8° from [010]. The second p-dichlorobenzene molecule is in the sinusoidal channel. Its long molecular axis deviates almost 7° from [100] and is practically parallel to (010). The structural aspects are in all details comparable to those in the high-loaded H-ZSM-5/p-xylene complex [van Koningsveld, Tuinstra, van Bekkum & Jansen (1989). Acta Cryst. B45, 423–431] , except for the main interaction forces between the p-dichlorobenzene molecules at the channel intersection.


1988 ◽  
Vol 43 (2) ◽  
pp. 171-174 ◽  
Author(s):  
Siegfried Pohl ◽  
Wolfgang Saak ◽  
Peter Stolz

(Ph4P)2Mn2Br6 (1) and (Ph3PCH2Ph)2Mn2I6 (2) were prepared from the reaction of manganese dihalide with the corresponding phosphonium halide in CH2Cl2.The structures of 1 and 2 were determined from single crystal X-ray diffraction data.Both compounds crystallize in the triclinic space group P 1 with one formula unit per unit cell.1:a = 998.1(1), b = 1005.7(1), c = 1313.3(2) pm, α = 108.51(1), β = 94.25(1), γ = 100.36(1)°.2: a = 1058.6(2), b = 1236.3(2), c = 1248.4(3) pm, α = 63.53(1), β = 74.15(1), γ = 74.65(1)°.The structures of 1 and 2 exhibit discrete, dimeric anions formed by the fusion of two identical tetrahedral-like units with a common halogen-halogen edge. The mean Mn-Hal bond lengths were found to be 251.8 pm (Mn-Br) and 272.2 pm (Mn-I). The difference between the bridging and terminal Mn-Hal bond lengths is about 12-13 pm in both compounds


1994 ◽  
Vol 49 (12) ◽  
pp. 1654-1658 ◽  
Author(s):  
Markus Wieber ◽  
Stefan Lang ◽  
Stefan Rohse ◽  
Ralph Habersack ◽  
Christian Burschka

The synthesis of triphenyltelluroniumsulfide (Ph3TeS)4 is described together with a NMR-spectroscopic characterization. The structure of the title compound was determined by single crystal X-ray diffraction. Crystals of triphenyltelluroniumsulfide are triclinic (space group P1) with the cell parameters a = 1178.0(3) pm. b = 1295.8(6) pm. c = 1298.7(4) pm, α = 77.67(3)°, β = 82.18(2)°, γ = 66.00(2)° (V = 1766(1) × 106 pm3) and Z = 2. The compound appears to form a step-like structure of two [Ph3TeS]2 units and crystallizes with two molecules of CH2Cl2 per unit cell.


Sign in / Sign up

Export Citation Format

Share Document