scholarly journals A universal multi-platform 3D printed bioreactor chamber for tendon tissue engineering

2020 ◽  
Vol 11 ◽  
pp. 204173142094246
Author(s):  
Adam J Janvier ◽  
Elizabeth Canty-Laird ◽  
James R Henstock

A range of bioreactors use linear actuators to apply tensile forces in vitro, but differences in their culture environments can limit a direct comparison between studies. The widespread availability of 3D printing now provides an opportunity to develop a ‘universal’ bioreactor chamber that, with minimal exterior editing can be coupled to a wide range of commonly used linear actuator platforms, for example, the EBERS-TC3 and CellScale MCT6, resulting in a greater comparability between results and consistent testing of potential therapeutics. We designed a bioreactor chamber with six independent wells that was 3D printed in polylactic acid using an Ultimaker 2+ and waterproofed using a commercially available coating (XTC-3D), an oxirane resin. The cell culture wells were further coated with Sylgard-184 polydimethylsiloxane (PDMS) to produce a low-adhesion well surface. With appropriate coating and washing steps, all materials were shown to be non-cytotoxic by lactate dehydrogenase assay, and the bioreactor was waterproof, sterilisable and reusable. Tissue-engineered tendons were generated from human mesenchymal stem cells in a fibrin hydrogel and responded to 5% cyclic strain (0.5 Hz, 5 h/day, 21 days) in the bioreactor by increased production of collagen-Iα1 and decreased production of collagen-IIIα1. Calcification of the extracellular matrix was observed in unstretched tendon controls indicating abnormal differentiation, while tendons cultured under cyclic strain did not calcify and exhibited a tenogenic phenotype. The ease of manufacturing this bioreactor chamber enables researchers to quickly and cheaply reproduce this culture environment for use with many existing bioreactor actuator platforms by downloading the editable CAD files from a public database and following the manufacturing steps we describe.

2010 ◽  
Vol 21 (13) ◽  
pp. 1737-1760 ◽  
Author(s):  
Cédryck Vaquette ◽  
Saïd Slimani ◽  
Cyril J. F. Kahn ◽  
Nguyen Tran ◽  
Rachid Rahouadj ◽  
...  

2008 ◽  
Vol 33 (8) ◽  
pp. 1388-1396 ◽  
Author(s):  
Jonathan Riboh ◽  
Alphonsus K.S. Chong ◽  
Hung Pham ◽  
Michael Longaker ◽  
Christopher Jacobs ◽  
...  

2018 ◽  
Vol 33 (1) ◽  
pp. 127-139 ◽  
Author(s):  
Andrea Fotticchia ◽  
David Musson ◽  
Cristina Lenardi ◽  
Emrah Demirci ◽  
Yang Liu

Tendon tears are a relevant concern for today’s national health systems because of their social impact and high recurrence rate. The current gold standard for fixing tendon tears is surgical repair; however, this strategy is not able to fully re-establish tendon integrity and functionality. Tissue engineering approaches aim at promoting tissue regeneration by delivering the opportune signals to the injured site combining biomaterials, cells and biochemical cues. Electrospinning is currently one of the most versatile polymer processing techniques that allows manufacturing of nano- and micro-fibres substrates. Such fibrous morphology is deemed to be an ideal substrate to convey topographical cues to cells. Here we evaluated the potential of polycaprolactone processed by means of electrospinning technology for tendon tissue engineering. Fibrous free-of-defects substrate with random and aligned fibres were successfully fabricated. Rat tenocytes were used to assess the cytocompatibility of the substrates for application as tendon tissue engineered devices. Tenocytes were able to proliferate and adapt to the substrates topography acquiring an elongated morphology, which is the precondition for oriented collagen deposition, when seeded on aligned fibres. Real time Polymerase Chain Reaction (Rt-PCR) also revealed the overall maintenance of tenocyte phenotype over 7 days culture. To verify suitability for in vivo implantation, the level of inflammatory cytokine genes expressed by THP-1 cells cultured in presence of electrospun polycaprolactone substrates was evaluated. Inflammatory response was limited. The novel preliminary in vitro work presented herein showing tenocytes compatibility and limited inflammatory cytokines synthesis suggests that electrospun polycaprolactone may be taken into consideration as substrate for tendon healing applications.


2021 ◽  
pp. neurintsurg-2021-017487
Author(s):  
Jiahui Li ◽  
Oscar Castaño ◽  
Alejandro Tomasello ◽  
Marta de Dios Lascuevas ◽  
Pere Canals ◽  
...  

BackgroundA direct aspiration first pass thrombectomy (ADAPT) is a fast-growing technique for which a broad catalog of catheters that provide a wide range of aspiration forces can be used. We aimed to characterize different catheters' aspiration performance on stiff clots in an in vitro vascular model. We hypothesized that labeled catheter inner diameter (labeled-ID) is not the only parameter that affects the aspiration force (asp-F) and that thrombus–catheter tip interaction and distensibility also play a major role.MethodsWe designed an experimental setup consisting of a 3D-printed carotid artery immersed in a water deposit. We measured asp-F and distensibility of catheter tips when performing ADAPT on a stiff clot analog larger than catheter labeled-ID. Correlations between asp-F, catheter ID, and tip distensibility were statistically assessed.ResultsExperimental asp-F and catheter labeled-ID were correlated (r=0.9601; P<0.01). The relative difference between experimental and theoretical asp-F (obtained by the product of the tip’s section area by the vacuum pressure) correlated with tip’s distensibility (r=0.9050; P<0.01), evidencing that ADAPT performance is highly influenced by catheter tip shape-adaptability to the clot and that the effective ID (eff-ID) may differ from the labeled-ID specified by manufacturers. Eff-ID showed the highest correlation with experimental asp-F (r=0.9944; P<0.01), confirming that eff-ID rather than labeled-ID should be considered to better estimate the device efficiency.ConclusionsCatheter tip distensibility can induce a significant impact on ADAPT performance when retrieving a stiff clot larger than the device ID. Our findings might contribute to optimizing thrombectomy strategies and the design of novel aspiration catheters.


2018 ◽  
Vol 19 (8) ◽  
pp. 2272 ◽  
Author(s):  
Chi-Fen Hsieh ◽  
Zexing Yan ◽  
Ricarda Schumann ◽  
Stefan Milz ◽  
Christian Pfeifer ◽  
...  

The poor and slow healing capacity of tendons requires novel strategies to speed up the tendon repair process. Hence, new and promising developments in tendon tissue engineering have become increasingly relevant. Previously, we have established a tendon progenitor cell line via ectopic expression of the tendon-related basic helix-loop-helix (bHLH) transcription factor Scleraxis (Scx) in human bone marrow mesenchymal stem cells (hMSC-Scx). The aim of this study was to directly compare the characteristics of hMSC-Scx cells to that of primary human tendon stem/progenitors cells (hTSPCs) via assessment of self-renewal and multipotency, gene marker expression profiling, in vitro wound healing assay and three-dimensional cell sheet formation. As expected, hTSPCs were more naive than hMSC-Scx cells because of higher clonogenicity, trilineage differentiation potential, and expression of stem cell markers, as well as higher mRNA levels of several gene factors associated with early tendon development. Interestingly, with regards to wound healing, both cell types demonstrate a comparable speed of scratch closure, as well as migratory velocity and distance in various migration experiments. In the three-dimensional cell sheet model, hMSC-Scx cells and hTSPCs form compact tendinous sheets as histological staining, and transmission electron microscopy shows spindle-shaped cells and collagen type I fibrils with similar average diameter size and distribution. Taken together, hTSPCs exceed hMSC-Scx cells in several characteristics, namely clonogenicity, multipotentiality, gene expression profile and rates of tendon-like sheet formation, whilst in three-dimensional cell sheets, both cell types have comparable in vitro healing potential and collagenous composition of their three-dimensional cell sheets, making both cell types a suitable cell source for tendon tissue engineering and healing.


2015 ◽  
Vol 33 (6) ◽  
pp. 911-918 ◽  
Author(s):  
Daniel W. Youngstrom ◽  
Ibtesam Rajpar ◽  
David L. Kaplan ◽  
Jennifer G. Barrett

2021 ◽  
Vol 22 (20) ◽  
pp. 11215
Author(s):  
Chih-Hao Chen ◽  
Dai-Ling Li ◽  
Andy Deng-Chi Chuang ◽  
Banendu Sunder Dash ◽  
Jyh-Ping Chen

To recreate the in vivo niche for tendon tissue engineering in vitro, the characteristics of tendon tissue underlines the use of biochemical and biophysical cues during tenocyte culture. Herein, we prepare core-sheath nanofibers with polycaprolactone (PCL) sheath for mechanical support and hyaluronic acid (HA)/platelet-rich plasma (PRP) core for growth factor delivery. Three types of core-sheath nanofiber membrane scaffolds (CSNMS), consisting of random HA-PCL nanofibers (Random), random HA/PRP-PCL nanofibers (Random+) or aligned HA/PRP-PCL (Align+) nanofibers, were used to study response of rabbit tenocytes to biochemical (PRP) and biophysical (fiber alignment) stimulation. The core-sheath structures as well as other pertinent properties of CSNMS have been characterized, with Align+ showing the best mechanical properties. The unidirectional growth of tenocytes, as induced by aligned fiber topography, was confirmed from cell morphology and cytoskeleton expression. The combined effects of PRP and fiber alignment in Align+ CSNMS lead to enhanced cell proliferation rates, as well as upregulated gene expression and marker protein synthesis. Another biophysical cue on tenocytes was introduced by dynamic culture of tenocyte-seeded Align+ in a bioreactor with cyclic tension stimulation. Augmented by this biophysical beacon from mechanical loading, dynamic cell culture could shorten the time for tendon maturation in vitro, with improved cell proliferation rates and tenogenic phenotype maintenance, compared to static culture. Therefore, we successfully demonstrate how combined use of biochemical/topographical cues as well as mechanical stimulation could ameliorate cellular response of tenocytes in CSNMS, which can provide a functional in vitro environmental niche for tendon tissue engineering.


2008 ◽  
Vol 41 (01) ◽  
pp. 38-46
Author(s):  
Bassetto Franco ◽  
Vindigni Vincenzo ◽  
Dalla Vedova Alessandro ◽  
Carolin Tonello ◽  
Giovanni Abatangelo ◽  
...  

ABSTRACTTissue engineering is a multidisciplinary field that involves the application of the principles and methods of engineering and life sciences towards i) the fundamental understanding of structure-function relationships in normal and pathological mammalian tissues and ii) the development of biological substitutes that restore, maintain or improve tissue function. The goal of tissue engineering is to surpass the limitations of conventional treatments based on organ transplantation and biomaterial implantation. The field of tendon tissue engineering is relatively unexplored due to the difficulty in in vitro preservation of tenocyte phenotype. Only recently has mechanobiology allowed us to gain a better understanding of the fundamental role of in vitro mechanical stimuli in maintaining the phenotype of tendinous tissue. This review analyzes the techniques used so far for in vitro regeneration of tendinous tissue.


Sign in / Sign up

Export Citation Format

Share Document