Cardiovascular effects of space radiation: implications for future human deep space exploration

2019 ◽  
Vol 26 (16) ◽  
pp. 1707-1714 ◽  
Author(s):  
Adam Mitchell ◽  
Dominic Pimenta ◽  
Jaspal Gill ◽  
Haris Ahmad ◽  
Richard Bogle

Background A manned mission to Mars has been contemplated by the world's largest space agencies for a number of years. The duration of the trip would necessitate a much longer exposure to deep space radiation than any human has ever been exposed to in the past. Concern regarding cancer risk has thus far stalled the progress of deep space exploration; however, the effect of space radiation on the cardiovascular system is significantly less well understood. Discussion Damage by radiation in space is mediated by a number of sources, including X-rays, protons and heavier charged atomic nuclei (HZE ions, the high-energy component of galactic cosmic rays). Previously, only lunar mission astronauts have been exposed to significant deep space radiation, with all other missions being low earth orbits only. The effect of this radiation on the human body has been inconclusively studied, and the long-term damage caused to the vascular endothelium by this radiation due to the effect of high-energy particles is not well known. Conclusion Current radiation shielding technology, which would be viable for use in spacecraft, would not eliminate radiation risk. Similar to how a variety of shielding techniques are used every day by radiographers, again without full risk elimination, we need to explore and better understand the effect of deep space radiation in order to ensure the safety of those on future space missions.

2004 ◽  
Vol 851 ◽  
Author(s):  
L. K. Mansur ◽  
B. J. Frame ◽  
N. C. Gallego ◽  
S. B. Guetersloh ◽  
J. O. Johnson ◽  
...  

ABSTRACTRadiation doses from galactic cosmic rays (GCR) are a significant issue for spacecraft crew exposures in deep space. We report initial work to evaluate a range of materials for GCR shielding. Earlier work has shown that conventional spacecraft materials, aluminum and higher atomic number structural alloys, provide relatively little shielding and, under certain conditions, may increase radiation risk. Materials containing high proportions of hydrogen and other low atomic mass nuclei provide improved GCR shielding. Polyethylene (PE) is generally considered a good performance benchmark shield material. However, PE shielding occupies volume and adds mass to the spacecraft. In this work we investigate several materials that are shown to provide shielding similar to PE, but which could furnish additional spacecraft functions, possibly eliminating the need for materials currently used for structural support or thermal management. Carbon forms that can incorporate a large mass of hydrogen, as well as polymers and polymer composites are being explored. Calculations of shielding effectiveness in GCR spectra have been carried out. Experiments to measure shielding properties recently have been completed at the NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) using high energy beans of O16. In this paper we report preliminary shielding results.


2020 ◽  
Vol 21 (18) ◽  
pp. 6603
Author(s):  
Yujie Yan ◽  
Kunlan Zhang ◽  
Guangming Zhou ◽  
Wentao Hu

High-energy and high-atom-number (HZE) space radiation poses an inevitable potential threat to astronauts on deep space exploration missions. Compared with low-LET radiation, high-energy and high-LET radiation in space is more efficient in inducing clustered DNA damage with more serious biological consequences, such as carcinogenesis, central nervous system injury and degenerative disease. Space radiation also causes epigenetic changes in addition to inducing damage at the DNA level. Considering the important roles of microRNAs in the regulation of biological responses of radiation, we systematically reviewed both expression profiling and functional studies relating to microRNAs responding to space radiation as well as to space compound environment. Finally, the directions for improvement of the research related to microRNAs responding to space radiation are proposed. A better understanding of the functions and underlying mechanisms of the microRNAs responding to space radiation is of significance to both space radiation risk assessment and therapy development for lesions caused by space radiation.


2019 ◽  
Vol 64 (20) ◽  
pp. 2087-2103 ◽  
Author(s):  
Lei Zhao ◽  
Yuxuan Shang ◽  
Shuang Yuan ◽  
Xinye He ◽  
Dong Mi ◽  
...  

Author(s):  
James F. Soeder ◽  
Anne Mcnelis ◽  
Raymond Beach ◽  
Nancy McNelis ◽  
Timothy Dever ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
J. N. Chung ◽  
Jun Dong ◽  
Hao Wang ◽  
S. R. Darr ◽  
J. W. Hartwig

AbstractThe extension of human space exploration from a low earth orbit to a high earth orbit, then to Moon, Mars, and possibly asteroids is NASA’s biggest challenge for the new millennium. Integral to this mission is the effective, sufficient, and reliable supply of cryogenic propellant fluids. Therefore, highly energy-efficient thermal-fluid management breakthrough concepts to conserve and minimize the cryogen consumption have become the focus of research and development, especially for the deep space mission to mars. Here we introduce such a concept and demonstrate its feasibility in parabolic flights under a simulated space microgravity condition. We show that by coating the inner surface of a cryogenic propellant transfer pipe with low-thermal conductivity microfilms, the quenching efficiency can be increased up to 176% over that of the traditional bare-surface pipe for the thermal management process of chilling down the transfer pipe. To put this into proper perspective, the much higher efficiency translates into a 65% savings in propellant consumption.


Sign in / Sign up

Export Citation Format

Share Document