scholarly journals Successful treatment of choreo-athetotic movements in a patient with an EEF1A2 gene variant

2018 ◽  
Vol 6 ◽  
pp. 2050313X1880762 ◽  
Author(s):  
Eboni I Lance ◽  
Martin Kronenbuerger ◽  
Julie S Cohen ◽  
Orion Furmanski ◽  
Harvey S Singer ◽  
...  

Pathogenic variants in EEF1A2, a gene encoding a eukaryotic translation elongation factor, have been previously reported in pediatric cases of epileptic encephalopathy and intellectual disability. We report a case of a 17-year-old male with a prior history of epilepsy, autism, intellectual disability, and the abrupt onset of choreo-athetotic movements. The patient was diagnosed with an EEF1A2 variant by whole exome sequencing. His movement disorder responded dramatically to treatment with tetrabenazine. To the best of our knowledge, this is the first report of successful treatment of a hyperkinetic movement disorder in the setting of EEF1A2 mutation. A trial with tetrabenazine should be considered in cases with significant choreoathetosis.

Author(s):  
J Fonseca ◽  
C Melo ◽  
C Ferreira ◽  
M Sampaio ◽  
R Sousa ◽  
...  

AbstractEarly infantile epileptic encephalopathy-64 (EIEE 64), also called RHOBTB2-related developmental and epileptic encephalopathy (DEE), is caused by heterozygous pathogenic variants (EIEE 64; MIM#618004) in the Rho-related BTB domain-containing protein 2 (RHOBTB2) gene. To date, only 13 cases with RHOBTB2-related DEE have been reported. We add to the literature the 14th case of EIEE 64, identified by whole exome sequencing, caused by a heterozygous pathogenic variant in RHOBTB2 (c.1531C > T), p.Arg511Trp. This additional case supports the main features of RHOBTB2-related DEE: infantile-onset seizures, severe intellectual disability, impaired motor functions, postnatal microcephaly, recurrent status epilepticus, and hemiparesis after seizures.


2018 ◽  
Vol 89 (10) ◽  
pp. A29.4-A30 ◽  
Author(s):  
Ela M Akay ◽  
Ian S Schofield ◽  
Ming H Lai ◽  
Rhys H Thomas

We describe the seizure phenotype of a 26 year old lady who presented with a probable photic-induced convulsion on a background of mild intellectual disability, facial dysmorphia, fused cervical vertebrae and ventricular septal defect. There was no prior history of seizures.Routine EEG was polyrhythmic with a prominent photoparoxysmal response at 14 Hz and 40 Hz. CT head was normal. A SNP array demonstrated a rare 51 kb deletion at 12 p12.1 which disrupts the SOX5 gene.SOX5 is a developmentally important gene encoding a transcription factor that plays a role in multiple developmental pathways including of the nervous system. Loss of function of this gene is associated with Lamb-Shaffer syndrome, first characterised in 2012 with global developmental delay, intellectual disability, mild dysmorphic facies, language impairment and variable skeletal abnormalities.3 of the original cohort of 16 patients described experienced seizures and the nature of their epilepsy was not further defined. Only a further 7 cases have been reported to date, none of whom experienced seizures. Our case helps to broaden the phenotype of Lamb-Shaffer syndrome, highlights the importance of looking for copy number variation and poses questions regarding the neurobiology of photo-sensitivity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pingli Zhang ◽  
Di Cui ◽  
Peiyuan Liao ◽  
Xiang Yuan ◽  
Nuan Yang ◽  
...  

The mental retardation-55 with seizures (MRD55) is a rare genetic disease characterized by developmental delay, intellectual disability, language delay and multiple types of epileptic seizures. It is caused by pathogenic variants of the NUS1 gene, which encodes Nogo-B receptor (NgBR), a necessary subunit for the glycosylation reactions in mammals. To date, 25 disease-causing mutations of NUS1 have been reported, which are responsible for various diseases, including dystonia, Parkinson's disease, developmental and epileptic encephalopathy as well as congenital disorder of glycosylation. In addition, only 9 of these mutations were reported with detailed clinical features. There are no reports about Chinese cases with MRD55. In this study, a novel, de novo pathogenic variant of NUS1 (c.51_54delTCTG, p.L18Tfs*31) was identified in a Chinese patient with intellectual disability and epileptic seizures. This pathogenic variant resulted in truncated NgBR proteins, which might be the cause of the clinical features of the patient. Oxcarbazepine was an effective treatment for improving speech and movement of the patient, who consequently presented with no seizure. With this novel pathogenic variant found in NUS1, we expand the genotype spectrum of MRD55 and provide valuable insights into the potential genotype-phenotype correlation.


2021 ◽  
pp. jmedgenet-2020-107430
Author(s):  
Maria Lisa Dentici ◽  
Viola Alesi ◽  
Mathieu Quinodoz ◽  
Barbara Robens ◽  
Andrea Guerin ◽  
...  

BackgroundNext-generation sequencing, combined with international pooling of cases, has impressively enhanced the discovery of genes responsible for Mendelian neurodevelopmental disorders, particularly in individuals affected by clinically undiagnosed diseases. To date, biallelic missense variants in ZNF526 gene, encoding a Krüppel-type zinc-finger protein, have been reported in three families with non-syndromic intellectual disability.MethodsHere, we describe five individuals from four unrelated families with an undiagnosed neurodevelopmental disorder in which we performed exome sequencing, on a combination of trio-based (4 subjects) or single probands (1 subject).ResultsWe identified five patients from four unrelated families with homozygous ZNF526 variants by whole exome sequencing. Four had variants resulting in truncation of ZNF526; they were affected by severe prenatal and postnatal microcephaly (ranging from −4 SD to −8 SD), profound psychomotor delay, hypertonic–dystonic movements, epilepsy and simplified gyral pattern on MRI. All of them also displayed bilateral progressive cataracts. A fifth patient had a homozygous missense variant and a slightly less severe disorder, with postnatal microcephaly (−2 SD), progressive bilateral cataracts, severe intellectual disability and unremarkable brain MRI.Mutant znf526 zebrafish larvae had notable malformations of the eye and central nervous system, resembling findings seen in the human holoprosencephaly spectrum.ConclusionOur findings support the role of ZNF526 biallelic variants in a complex neurodevelopmental disorder, primarily affecting brain and eyes, resulting in severe microcephaly, simplified gyral pattern, epileptic encephalopathy and bilateral cataracts.


2021 ◽  
Vol 22 (6) ◽  
pp. 2824
Author(s):  
Jan H. Döring ◽  
Julian Schröter ◽  
Jerome Jüngling ◽  
Saskia Biskup ◽  
Kerstin A. Klotz ◽  
...  

Pathogenic variants in KCNA2, encoding for the voltage-gated potassium channel Kv1.2, have been identified as the cause for an evolving spectrum of neurological disorders. Affected individuals show early-onset developmental and epileptic encephalopathy, intellectual disability, and movement disorders resulting from cerebellar dysfunction. In addition, individuals with a milder course of epilepsy, complicated hereditary spastic paraplegia, and episodic ataxia have been reported. By analyzing phenotypic, functional, and genetic data from published reports and novel cases, we refine and further delineate phenotypic as well as functional subgroups of KCNA2-associated disorders. Carriers of variants, leading to complex and mixed channel dysfunction that are associated with a gain- and loss-of-potassium conductance, more often show early developmental abnormalities and an earlier onset of epilepsy compared to individuals with variants resulting in loss- or gain-of-function. We describe seven additional individuals harboring three known and the novel KCNA2 variants p.(Pro407Ala) and p.(Tyr417Cys). The location of variants reported here highlights the importance of the proline(405)–valine(406)–proline(407) (PVP) motif in transmembrane domain S6 as a mutational hotspot. A novel case of self-limited infantile seizures suggests a continuous clinical spectrum of KCNA2-related disorders. Our study provides further insights into the clinical spectrum, genotype–phenotype correlation, variability, and predicted functional impact of KCNA2 variants.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Beatrice Berti ◽  
Giovanna Longo ◽  
Francesco Mari ◽  
Stefano Doccini ◽  
Ilaria Piccolo ◽  
...  

Abstract Background Charcot-Marie-Tooth disease (CMT) type 4B3 (CMT4B3) is a rare form of genetic neuropathy associated with variants in the MTMR5/SBF1 gene. MTMR5/SBF1 is a pseudophosphatase predicted to regulate endo-lysosomal trafficking in tandem with other MTMRs. Although almost ubiquitously expressed, pathogenic variants primarily impact on the peripheral nervous system, corroborating the involvement of MTMR5/SBF1 and its molecular partners in Schwann cells-mediated myelinization. Case presentation We report a case of severe CMT4B3 characterized by early-onset motor and axonal polyneuropathy in an Italian child in absence of any evidence of brain and spine MRI abnormalities or intellectual disability and with a biochemical profile suggestive of mitochondrial disease. Using an integrated approach combining both NGS gene panels and WES analysis, we identified two novel compound heterozygous missense variants in MTMR5/SBF1 gene, p.R763H (c.2291G > A) and p.G1064E (c.3194G > A). Studies in muscle identified partial defects of oxidative metabolism. Conclusion We describe the first case of an early onset severe polyneuropathy with motor and axonal involvement, due to recessive variants in the MTMR5/SBF1 gene, with no evidence of brain and spine MRI abnormalities, intellectual disability, no clinical and neurophysiological evidences of distal sensory impairment, and rapid neuromuscular deterioration. This report suggests that MTMR5/SBF1 should be considered in cases of infantile-onset CMT with secondary mitochondrial dysfunction.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Giada Moresco ◽  
Jole Costanza ◽  
Carlo Santaniello ◽  
Ornella Rondinone ◽  
Federico Grilli ◽  
...  

Abstract Background De novo pathogenic variants in the DDX3X gene are reported to account for 1–3% of unexplained intellectual disability (ID) in females, leading to the rare disease known as DDX3X syndrome (MRXSSB, OMIM #300958). Besides ID, these patients manifest a variable clinical presentation, which includes neurological and behavioral defects, and abnormal brain MRIs. Case presentation We report a 10-year-old girl affected by delayed psychomotor development, delayed myelination, and polymicrogyria (PMG). We identified a novel de novo missense mutation in the DDX3X gene (c.625C > G) by whole exome sequencing (WES). The DDX3X gene encodes a DEAD-box ATP-dependent RNA-helicase broadly implicated in gene expression through regulation of mRNA metabolism. The identified mutation is located just upstream the helicase domain and is suggested to impair the protein activity, thus resulting in the altered translation of DDX3X-dependent mRNAs. The proband, presenting with the typical PMG phenotype related to the syndrome, does not show other clinical signs frequently reported in presence of missense DDX3X mutations that are associated with a most severe clinical presentation. In addition, she has brachycephaly, never described in female DDX3X patients, and macroglossia, that has never been associated with the syndrome. Conclusions This case expands the knowledge of DDX3X pathogenic variants and the associated DDX3X syndrome phenotypic spectrum.


Sign in / Sign up

Export Citation Format

Share Document