scholarly journals Tribological characterization of particulate-reinforced aluminum metal matrix nanocomposites: A review

2020 ◽  
Vol 29 ◽  
pp. 2633366X2092140
Author(s):  
Deepak M Shinde ◽  
Prasanta Sahoo ◽  
J Paulo Davim

Aluminum (Al)-based composites are on increasing usage in sectors like ground transportation, aerospace, sports, and infrastructure because of the improved properties such as high strength to weight ratio, corrosion, fatigue, and wear resistance. Several applications involving dynamic contact stresses require excellent wear and frictional performance for improved life. Nanocomposites are found to perform exceedingly better than microcomposites and alloys in several lab scale tribological investigations carried out so far in the last decade. In this article, an attempt is made to review those published reports about dry sliding tribological behavior of particulate-reinforced Al nanocomposites. Wear and friction being system properties are found to get influenced by intrinsic factors such as reinforcement, fabrication method, microstructure; extrinsic parameters like load, speed, contact conditions and the system generated in situ tribolayer all being interrelated.

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Sudip Banerjee ◽  
Prasanta Sahoo ◽  
J Paulo Davim

Magnesium matrix nanocomposites (Mg-MNCs) are high grade materials widely used in aerospace, electronics, biomedical and automotive sectors for high strength to weight ratio, excellent sustainability and superior mechanical and tribological characteristics. Basic properties of Mg-MNCs rely on type and amount of reinforcement and fabrication process. Current study reviews existing literatures to explore contribution of different parameters on tribological properties of Mg-MNCs. Effects of particle size and amount of different reinforcements like SiC, WC, Al2O3, TiB2, CNT, graphene nano platelets (GNP), graphite on tribological behaviour are discussed. Incorporation of nanoparticles generally enhances properties. Role of different fabrication processes like stir casting (SC), ultrasonic treatment casting (UST), disintegrated melt deposition (DMD), friction stir processing (FSP) on wear and friction behaviour of Mg-MNCs is also reviewed. Contributions of different tribological process parameters (sliding speed, load and sliding distance) on wear, friction and wear mechanism are also examined.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


Nowadays polymer composites are emerged material which is used for extensive variety of applications because of their exclusive and beautiful characters. They have high durability, high strength-to-weight ratio and abrasion resistance. In this study the mechanical characteristics of coir and wood dust particle reinforced polyester composites using hand layup process were analyzed. The prepared composites were characterized using Scanning Electron Microscope and also the mechanical behaviors such as tensile strength and flexural strength were estimated using computerized testing machine


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2823 ◽  
Author(s):  
Mehran Dadkhah ◽  
Abdollah Saboori ◽  
Paolo Fino

Two-dimensional graphene plateletes with unique mechanical, electrical and thermo-physical properties could attract more attention for their employed as reinforcements in the production of new metal matrix nanocomposites (MMNCs), due to superior characteristics, such as being lightweight, high strength and high performance. Over the last years, due to the rapid advances of nanotechnology, increasing demand for the development of advanced MMNCs for various applications, such as structural engineering and functional device applications, has been generated. The purpose of this work is to review recent research into the development in the powder-based production, property characterization and application of magnesium, aluminum, copper, nickel, titanium and iron matrix nanocomposites reinforced with graphene. These include a comparison between the properties of graphene and another well-known carbonaceous reinforcement (carbon nanotube), following by powder-based processing strategies of MMNCs above, their mechanical and tribological properties and their electrical and thermal conductivities. The effects of graphene distribution in the metal matrices and the types of interfacial bonding are also discussed. Fundamentals and the structure–property relationship of such novel nanocomposites have also been discussed and reported.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 424
Author(s):  
N Subramani ◽  
R Krishnan

Alloys of Aluminium are prominently used in automobiles, aerospace and ship building industries because of their high strength to weight ratio. The aim of this work is to manufacture the particulate reinforced metal matrix composite (PRMMC) materials by using Aluminium 6061 and reinforcing Boron Carbide, particles of silicon and fly ash. The study helps to fabricate an optimized composite material through the best methodology which is identified at the end of the experimental studies which is going to be carried out. This study helps the current researches carried on the nano-composite materials and PRMMC. In this paper, the Aluminium 6061 and its reinforcements are discussed and it gives a methodology to select the optimized method. The specimens fabricated by stir casting are analyzed and categorized according to their mechanical behavior by conducting mechanical tests. The Micro-structure of the specimen is examined by scanning electron microscopy (SEM) and spectrum analysis is done to the reinforcement distribution percentage.


Author(s):  
Heping Liu ◽  
Shiyu Zhou ◽  
Xiaochun Li

Metal matrix nanocomposites (MMNCs) are produced by dispersing reinforcing nanoparticles into metal matrix. It is a type of emerging materials with high strength and light weight and draws significant attentions in recent years. If the particles are not well dispersed, they will form particle clusters in the metal matrix. These clusters will detrimentally impact on the final quality of MMNCs. This paper proposes a statistical approach to estimating the parameters of the size distribution of clusters in MMNCs. One critical challenge is that the clusters are distributed in a three-dimensional (3D) space, while the observations we have are two-dimensional (2D) cross-section microscopic images of these clusters. In the proposed approach, we first derived the probability distribution of the observed sizes of the 2D cross sections of the clusters and then a maximum likelihood estimation (MLE) method is developed to estimate the 3D cluster size distribution. Computational efficient algorithms are also established to make computational load manageable. The case studies based on simulation and real observed data are conducted, which demonstrates the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document