scholarly journals Production and characterization of a novel monoclonal antibody against neurotensin: immunohistochemical localization in the midbrain and hypothalamus.

1989 ◽  
Vol 37 (6) ◽  
pp. 831-841 ◽  
Author(s):  
F G Williams ◽  
A J Beitz

We developed a mouse monoclonal antibody against neurotensin (NT), termed NT8, for applications in immunohistochemistry and for ELISA analysis of NT. The antibody's paratope was determined by competitive ELISA using several peptide fragments of NT. That paratope requires intact peptide bonds between NT residues proline-7, arginine-8, and arginine-9. The antibody is of the IgG2B sub-isotype, having an IC50 for intact NT of approximately 3 nM when measured by competitive ELISA. Light microscopic immunohistochemical studies in the periaqueductal gray (PAG) and hypothalamus demonstrated staining patterns that agreed well with previous reports. Neuron perikarya were visualized even in the absence of colchicine pre-treatment, indicating that NT8 antibody is very sensitive in immunohistochemical applications. At the EM level, the antibody stained axon terminals, dendrites, and perikarya in the PAG. In lightly immunoreactive perikarya, rough endoplasmic reticula were visualized, suggesting that biosynthetic precursors to NT might be recognized by NT8.

1992 ◽  
Vol 40 (6) ◽  
pp. 827-838 ◽  
Author(s):  
M P Mark ◽  
T Tsuji ◽  
J Portoukalian ◽  
A Rebbaa ◽  
G Zidan ◽  
...  

A monoclonal IgM (MC22-33F), raised in response to mouse embryonic dental papilla cells, was selected for further analysis on the basis of the unusual resistance of its epitope to detergent extractions and protease treatments of cell cultures. Binding of MC22-33F to cultured cells was abolished after either pre-treatment of the cells with phospholypase C or pre-incubation of the hybridoma culture supernatant with multilamellar phosphatidylcholine-containing vesicles. MC22-33F reacted with phosphatidylcholine, with the phosphatidylcholine analogue dimethylphosphatidylethanolamine, and with sphingomyelin immobilized on polystyrene surfaces or in thin-layer chromatograms. Crossreaction with other phospholipids was not observed. The surface of cultured epithelial cells was labeled by MC22-33F at sites of bleb formation. Combining immunostaining by MC22-33F and histochemical staining of cultured cells revealed codistribution of phospholipid-containing inclusions with either lysosomes or neutral fat droplets, and inhibition of lipid degradation by kanamycin resulted in a parallel accumulation of these inclusions and of neutral fats in the cytoplasm. Immunolabeling by MC22-33F of frozen mouse tissues was maximal in fat-storing and steroid-producing cells. Extracellular phospholipids present in calcifying cartilage septa strongly reacted with MC22-33F. This monoclonal antibody offers an interesting alternative to histochemical lipid stains for investigating fatty metamorphosis and extracellular lipid deposition under physiological and pathological conditions.


1998 ◽  
Vol 79 (01) ◽  
pp. 177-185 ◽  
Author(s):  
Ashia Siddiqua ◽  
Michael Wilkinson ◽  
Vijay Kakkar ◽  
Yatin Patel ◽  
Salman Rahman ◽  
...  

SummaryWe report the characterization of a monoclonal antibody (MAb) PM6/13 which recognises glycoprotein IIIa (GPIIIa) on platelet membranes and in functional studies inhibits platelet aggregation induced by all agonists examined. In platelet-rich plasma, inhibition of aggregation induced by ADP or low concentrations of collagen was accompanied by inhibition of 5-hydroxytryptamine secretion. EC50 values were 10 and 9 [H9262]g/ml antibody against ADP and collagen induced responses respectively. In washed platelets treated with the cyclooxygenase inhibitor, indomethacin, PM6/13 inhibited platelet aggregation induced by thrombin (0.2 U/ml), collagen (10 [H9262]g/ml) and U46619 (3 [H9262]M) with EC50 = 4, 8 and 4 [H9262]g/ml respectively, without affecting [14C]5-hydroxytryptamine secretion or [3H]arachidonate release in appropriately labelled cells. Studies in Fura 2-labelled platelets revealed that elevation of intracellular calcium by ADP, thrombin or U46619 was unaffected by PM6/13 suggesting that the epitope recognised by the antibody did not influence Ca2+ regulation. In agreement with the results from the platelet aggregation studies, PM6/13 was found to potently inhibit binding of 125I-fibrinogen to ADP activated platelets. Binding of this ligand was also inhibited by two other MAbs tested, namely SZ-21 (also to GPIIIa) and PM6/248 (to the GPIIb-IIIa complex). However when tested against binding of 125I-fibronectin to thrombin stimulated platelets, PM6/13 was ineffective in contrast with SZ-21 and PM6/248, that were both potent inhibitors. This suggested that the epitopes recognised by PM6/13 and SZ-21 on GPIIIa were distinct. Studies employing proteolytic dissection of 125I-labelled GPIIIa by trypsin followed by immunoprecipitation with PM6/13 and analysis by SDS-PAGE, revealed the presence of four fragments at 70, 55, 30 and 28 kDa. PM6/13 did not recognize any protein bands on Western blots performed under reducing conditions. However Western blotting analysis with PM6/13 under non-reducing conditions revealed strong detection of the parent GP IIIa molecule, of trypsin treated samples revealed recognition of an 80 kDa fragment at 1 min, faint recognition of a 60 kDa fragment at 60 min and no recognition of any product at 18 h treatment. Under similar conditions, SZ-21 recognized fragments at 80, 75 and 55 kDa with the 55kDa species persisting even after 18 h trypsin treatment. These studies confirm the epitopes recognised by PM6/13 and SZ-21 to be distinct and that PM6/13 represents a useful tool to differentiate the characteristics of fibrinogen and fibronectin binding to the GPIIb-IIIa complex on activated platelets.


Diabetes ◽  
1986 ◽  
Vol 35 (5) ◽  
pp. 517-522 ◽  
Author(s):  
J. Hari ◽  
K. Yokono ◽  
K. Yonezawa ◽  
K. Amano ◽  
S. Yaso ◽  
...  

2017 ◽  
Vol 2017 (7) ◽  
pp. 4255-4262
Author(s):  
Elena Torfs ◽  
Julie Doucet ◽  
Domenico Santoro ◽  
Dang Ho ◽  
Medhavi Gupta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document