scholarly journals Ultrastructural localization of the major components of the extracellular matrix in normal rat nerve.

1992 ◽  
Vol 40 (6) ◽  
pp. 859-868 ◽  
Author(s):  
P Lorimier ◽  
P Mezin ◽  
F Labat Moleur ◽  
N Pinel ◽  
S Peyrol ◽  
...  

In this study we determined the ultrastructural distribution of the various components of the extracellular matrix (laminin, fibronectin, Type I, III, and IV collagens) of the normal peripheral nerve in adult rat. The localization of these macromolecules was investigated in basement membranes as well as in different areas of epi-, peri-, and endoneurium, by use of a pre-embedding immunoperoxidase method.

1982 ◽  
Vol 92 (2) ◽  
pp. 343-349 ◽  
Author(s):  
A Martinez-Hernandez ◽  
S Gay ◽  
E J Miller

Antibodies specific for the alpha 1 (V) chain and native collagen molecules containing the alpha 1 (V) chain have been used in electron immunohistochemical studies of rat kidney to determine the ultrastructural distribution of this class of collagen molecules. In addition, antibodies against type I collagen and whole basement membrane were used as markers for interstitial collagen and authentic basement membranes. Our results indicate that type V collagen is present in the renal interstitium in different forms: in close apposition to interstitial collagen fibers; in the stromal aspect of vascular basement membranes; and as particulate material not bound to other structures. On the basis of these findings, we postulate a binding or connecting function for this collagen type.


1981 ◽  
Vol 91 (2) ◽  
pp. 427-437 ◽  
Author(s):  
C A Vaccaro ◽  
J S Brody

The ultrastructural characteristics of alveolar (ABM) and capillary (CBM) basement membranes in the adult rat lung have been defined using tannic acid fixation, ruthenium red staining, or incubation in guanidine HCl. ABM is dense and amorphous, has 3- to 5-nm filaments in the lamina rara externa (facing the alveolus) that run between the lamina densa and the basal cell surface of the epithelium, has an orderly array of ruthenium red-positive anionic sites that appear predominantly (79%) on the lamina rara externa, and has discontinuities beneath alveolar type II cells but not type I cells that allow penetration of type II cytoplasmic processes into the interstitium of the alveolar wall. The CBM is fibrillar and less compact than ABM, has no lamina rara filaments, and has one fifth the number of ruthenium red-positive anionic sites of ABM that appear predominantly (64%) overlying the lamina densa. Incubation of lung tissue with Flavobacterium heparinum enzyme or with chondroitinase has shown that ABM anionic sites represent heparan sulfate proteoglycans, whereas CBM anionic sites contain this and other sulfated proteoglycans. The CBM fuses in a local fashion with ABM, compartmentalizing the alveolar wall into a thick and thin side and establishing a thin, single, basement-membrane gas-exchange surface between alveolar air, and capillary blood. The potential implications of ABM and CBM ultrastructure for permeability, cell differentiation, and repair and morphogenesis of the lung are discussed.


1990 ◽  
Vol 110 (4) ◽  
pp. 1405-1415 ◽  
Author(s):  
C H Streuli ◽  
M J Bissell

Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.


1995 ◽  
Vol 24 (2) ◽  
pp. 79-84 ◽  
Author(s):  
Gerald J. Little ◽  
C. Stephen Robinson ◽  
John W. Heath

1985 ◽  
Vol 33 (7) ◽  
pp. 655-664 ◽  
Author(s):  
S Berrih ◽  
W Savino ◽  
S Cohen

The immunohistochemical detection of elements of the human thymic extracellular matrix in situ and in vitro is described. In the normal thymus, the intracapsular and intraseptal fibers were strongly labeled by anti-type I collagen antiserum. Basement membranes bordering the capsule, septae, and perivascular spaces were intensely stained by anti-type IV collagen, anti-fibronectin, and anti-laminin sera. In hyperplastic myasthenia gravis thymuses, the major changes consisted of discontinuities of the basement membrane adjacent to clusters of epithelial (keratin-containing) cells, among which an unusual connective framework (densely labeled by all the antisera) was observed. In vitro, most epithelial cells were strongly labeled by antifibronectin serum and to a lesser extent by the anti-type IV collagen and anti-laminin sera. In addition, fibronectin, laminin, and type IV collagen were detected in the intercellular spaces bordering the epithelial cells in culture. Results show that thymic epithelial cells participate in the synthesis of extracellular matrix elements, which as a result of their localization and influence on epithelial cell growth, should be regarded as constitutive components of the thymic microenvironment.


2019 ◽  
Vol 68 (2) ◽  
pp. 149-162 ◽  
Author(s):  
Marì Regoli ◽  
Gian Marco Tosi ◽  
Giovanni Neri ◽  
Annalisa Altera ◽  
Daniela Orazioli ◽  
...  

Idiopathic epiretinal membranes are sheets of tissue that develop in the vitreoretinal interface. They are formed by cells and extracellular matrix, and they are considered the expression of a fibrotic disorder of the eye. Confocal and immunoelectron microscopy of the extracellular matrix of excised membranes, revealed high contents of type IV collagen. It was distributed within epiretinal membranes in basement membrane-like structures associated with cells and in interstitial deposits. In both cases, type IV collagen was always associated with type I collagen. Col IV was also coupled with Col VI and laminin. At high magnification, type IV collagen immunolabelling was associated with interstitial deposits and showed a reticular appearance due to the intersection of beaded microfilaments. The microfilaments are about 12 nm in diameter with interbead distance of 30–40 nm. Cells of the epiretinal membranes showed intracellular lysosome-like bodies heavily labeled for type IV collagen suggesting an active role in membrane remodeling. Hence, type IV collagen is not necessarily always associated with basement membranes; the molecular interactions that it may develop when not incorporated in basement membranes are still unknown. It is conceivable, however, that they might have implications in the progression of epiretinal membranes and other fibrotic disorders.


1959 ◽  
Vol 196 (5) ◽  
pp. 1057-1062 ◽  
Author(s):  
Ernest B. Wright ◽  
E. Jean Lester

Fifty-four male Holtzman strain rats, 200–250 gm, were subjected to the same surgical treatment; 27 adrenalectomized, the others sham-operated. Fifteen of each group were kept on normal diet; four on 0.9% NaCl drinking water; four given daily injections of 1 mg cortone acetate and four, 2 mg cortone acetate. The excitability constant k (H. A. Blair. J. Gen. Physiol. 15: 709, 1932) was 30% lower in adrenalectomized rat nerve than in normal and the velocity of conduction was slightly decreased. The effect of adrenalectomy on excitability and conduction was reversed or prevented by 1 mg cortone acetate or by 0.9% NaCl drinking water. Two milligrams cortone acetate in normal animals also reduced k slightly but did not affect the velocity. The survival time of adrenalectomized rat nerve deprived of oxygen was decreased 12% from normal. Administration of cortisone to normal animals also resulted in a slightly decreased survival time. The oxygen uptake rate was 214 cu mm/gm/hr. in nerves from adrenalectomized rats; 181 cu mm/gm/hr. in normal rat nerves, an increase of 18%. Immersion of normal rat nerves in low-sodium solution (less than 10% of normal) produced excitability changes similar to the adrenalectomy effects. It is concluded that the effect of adrenalectomy on excitability of peripheral nerve is due to the resultant change in electrolyte balance, especially with respect to the Na ion and an apparent contradiction between results obtained from brain tissue and nerve tissue by previous investigators has been resolved.


1988 ◽  
Vol 107 (6) ◽  
pp. 2737-2748 ◽  
Author(s):  
K S O'Shea ◽  
V M Dixit

Immunocytochemical localization of thrombospondin (TSP), a trimeric glycoprotein constituent of extracellular matrices, produced striking regional and temporal patterns of distribution in the developing mouse embryo. TSP was present in many basement membranes, surrounded epithelial cells, and was associated with peripheral nerve outgrowth. During organogenesis, TSP was also found on the surface of myoblasts and chondroblasts, and TSP was differentially deposited in cortical layers. With differentiation of chondrocytes and myotubes immunoreactivity was decreased, and differential cortical staining was lost. Presence of TSP was associated with morphogenetic processes of proliferation, migration, and intercellular adhesion.


1991 ◽  
Vol 99 (2) ◽  
pp. 443-451
Author(s):  
M.R. Austria ◽  
J.R. Couchman

Basement membranes are complex extracellular matrices contributing to the regulation of growth, migration and differentiation of many cell types. However, little is known about the mechanisms regulating the deposition and assembly of basement membrane from its constituents. We have investigated the role of extracellular matrix molecules in the control of basement membrane matrix assembly by cultured endodermal (PFHR-9) cells. In the presence of fibronectin-depleted serum, substrata of fibronectin or laminin induced an increase in deposition of laminin, type IV collagen and proteoglycans by PFHR-9 cells, in comparison to cells adherent to type I collagen-coated, vitronectin-coated or uncoated substrata. Direct effects of fibronectin or laminin on the degree of cell spreading or rate of proliferation were not responsible for enhanced matrix deposition. The effect did not result from a redirection of basement membrane components to the matrix, since there was no decrease in matrix constituents released to the culture supernatants. Furthermore, the synthesis and release of other molecules that are not basement membrane constituents was unaltered in response to different extracellular matrix substrata. Experiments with fibronectin fragments showed that a 105 × 10(3) Mr ‘cell’-binding domain (containing the cell attachment sequence Arg-Gly-Asp-Ser) was an important contributor to enhanced matrix deposition, while the N-terminal 29 × 10(3) Mr heparin-binding domain also contributed to the effect, particularly with respect to heparan sulfate proteoglycan deposition. It seems that fibronectin has a dual role of action in promoting basement membrane matrix assembly, through direct cell surface interactions, and through the binding of fibronectin to other matrix components that may nucleate or stabilize the matrix assembly.


1988 ◽  
Vol 36 (9) ◽  
pp. 1167-1173 ◽  
Author(s):  
P S Amenta ◽  
J Gil ◽  
A Martinez-Hernandez

We localized collagen types III, IV, and VI in normal rat lung by light and electron immunohistochemistry. Type IV collagen was present in every basement membrane examined and was absent from all other structures. Although types III and VI had a similar distribution, being present in the interstitium of major airways, blood vessels, and alveolar septa, as in other organs, they had different morphologies. Type III collagen formed beaded fibers, 15-20 nm in diameter, whereas type VI collagen formed fine filaments, 5-10 nm in diameter. Both collagen types were found exclusively in the interstitium, often associated with thick (30-35 nm) cross-banded type I collagen fibers. Occasionally, type III fibers and type VI filaments could be found bridging from the interstitium to the adventitial aspect of some basement membranes. Furthermore, the association of collagen type VI with types I and III and basement membranes suggests that type VI may contribute to integration of the various components of the pulmonary extracellular matrix into a functional unit.


Sign in / Sign up

Export Citation Format

Share Document