Re-thinking site amplification in regional seismic risk assessment

2020 ◽  
Vol 36 (1_suppl) ◽  
pp. 274-297 ◽  
Author(s):  
Graeme Weatherill ◽  
Sreeram Reddy Kotha ◽  
Fabrice Cotton

Probabilistic assessment of seismic hazard and risk over a geographical region presents the modeler with challenges in the characterization of the site amplification that are not present in site-specific assessment. Using site-to-site residuals from a ground motion model fit to observations from the Japanese KiK-net database, correlations between measured local amplifications and mappable proxies such as topographic slope and geology are explored. These are used subsequently to develop empirical models describing amplification as a direct function of slope, conditional upon geological period. These correlations also demonstrate the limitations of inferring 30-m shearwave velocity from slope and applying them directly into ground motion models. Instead, they illustrate the feasibility of deriving spectral acceleration amplification factors directly from sets of observed records, which are calibrated to parameters that can be mapped uniformly on a regional scale. The result is a geologically calibrated amplification model that can be incorporated into national and regional seismic hazard and risk assessment, ensuring that the corresponding total aleatory variability reflects the predictive capability of the mapped site proxy.

2017 ◽  
Vol 33 (2) ◽  
pp. 481-498 ◽  
Author(s):  
Julian J. Bommer ◽  
Peter J. Stafford ◽  
Benjamin Edwards ◽  
Bernard Dost ◽  
Ewoud van Dedem ◽  
...  

The potential for building damage and personal injury due to induced earthquakes in the Groningen gas field is being modeled in order to inform risk management decisions. To facilitate the quantitative estimation of the induced seismic hazard and risk, a ground motion prediction model has been developed for response spectral accelerations and duration due to these earthquakes that originate within the reservoir at 3 km depth. The model is consistent with the motions recorded from small-magnitude events and captures the epistemic uncertainty associated with extrapolation to larger magnitudes. In order to reflect the conditions in the field, the model first predicts accelerations at a rock horizon some 800 m below the surface and then convolves these motions with frequency-dependent nonlinear amplification factors assigned to zones across the study area. The variability of the ground motions is modeled in all of its constituent parts at the rock and surface levels.


2021 ◽  
Vol 111 (5) ◽  
pp. 2595-2616 ◽  
Author(s):  
Danhua Xin ◽  
Zhenguo Zhang

ABSTRACT The improvement of ground-motion prediction accuracy is crucial for seismic hazard and risk assessment and engineering practices. Empirically regressed ground-motion prediction equations (GMPEs) are widely used for such purposes in decades. However, the inherent drawbacks of GMPEs, such as the ergodic assumption, lack of near-source observation, and insufficiency to deal with the spatial correlation issue, have motivated geophysicists to find better alternatives. Recent studies on well-recorded earthquakes have illustrated that physics-based simulation (PBS) methods can provide predictions that are comparable to or ever superior to GMPE predictions. The increasing interests in applying PBSs also pose the need to statistically compare these simulations against GMPE predictions or actual observations. We notice the limitations in previous studies focusing on the predictive capability check of PBS. This article is to illustrate how more reasonable check of PBS should be conducted. We consider GMPE works in generally judging the reasonability of PBS, but PBS has the advantage in characterizing the heterogeneity of ground motion of a moderate-to-large earthquake, especially when considering the complexities in fault geometry, regional stress fields, rock properties, surface of the Earth, and site effects. We would rather recommend that, in the future, different GMPEs are only used to preliminarily judge the reasonability of PBS scenarios; then the ground motions simulated by those reasonable PBS scenarios (not limited to one) are further used for the following seismic hazard and risk assessment.


2020 ◽  
Vol 110 (4) ◽  
pp. 1517-1529
Author(s):  
Daniel E. McNamara ◽  
Emily L. G. Wolin ◽  
Morgan P. Moschetti ◽  
Eric M. Thompson ◽  
Peter M. Powers ◽  
...  

ABSTRACT We evaluated the performance of 12 ground-motion models (GMMs) for earthquakes in the tectonically active shallow crustal region of southern California using instrumental ground-motion observations from the 2019 Ridgecrest, California, earthquake sequence (Mw 4.0–7.1). The sequence was well recorded by the Southern California Seismic Network and rapid response portable aftershock monitoring stations. Ground-motion recordings of this size and proximity are rare, valuable, and independent of GMM development, allowing us to evaluate the predictive powers of GMMs. We first compute total residuals and compare the probability density functions, means, and standard deviations of the observed and predicted ground motions. Next we use the total residuals as inputs to the probabilistic scoring method (log-likelihood [LLH]). The LLH method provides a single score that can be used to weight GMMs in the U.S. Geological Survey (USGS) National Seismic Hazard Model (NSHM) logic trees. We also explore GMM performance for a range of earthquake magnitudes, wave propagation distances, and site characteristics. We find that the Next Generation Attenuation West-2 (NGAW2) active crust GMMs perform well for the 2019 Ridgecrest, California, earthquake sequence and thus validate their use in the 2018 USGS NSHM. However, significant ground-motion residual scatter remains unmodeled by NGAW2 GMMs due to complexities such as local site amplification and source directivity. Results from this study will inform logic-tree weights for updates to the USGS National NSHM. Results from this study support the use of nonergodic GMMs that can account for regional attenuation and site variations to minimize epistemic uncertainty in USGS NSHMs.


Author(s):  
Soumya Kanti Maiti ◽  
Gony Yagoda-Biran ◽  
Ronnie Kamai

ABSTRACT Models for estimating earthquake ground motions are a key component in seismic hazard analysis. In data-rich regions, these models are mostly empirical, relying on the ever-increasing ground-motion databases. However, in areas in which strong-motion data are scarce, other approaches for ground-motion estimates are sought, including, but not limited to, the use of simulations to replace empirical data. In Israel, despite a clear seismic hazard posed by the active plate boundary on its eastern border, the instrumental record is sparse and poor, leading to the use of global models for hazard estimation in the building code and all other engineering applications. In this study, we develop a suite of alternative ground-motion models for Israel, based on an empirical database from Israel as well as on four data-calibrated synthetic databases. Two host models are used to constrain model behavior, such that the epistemic uncertainty is captured and characterized. Despite the lack of empirical data at large magnitudes and short distances, constraints based on the host models or on the physical grounds provided by simulations ensure these models are appropriate for engineering applications. The models presented herein are cast in terms of the Fourier amplitude spectra, which is a linear, physical representation of ground motions. The models are suitable for shallow crustal earthquakes; they include an estimate of the median and the aleatory variability, and are applicable in the magnitude range of 3–8 and distance range of 1–300 km.


2021 ◽  
Author(s):  
Karina Loviknes ◽  
Danijel Schorlemmer ◽  
Fabrice Cotton ◽  
Sreeram Reddy Kotha

<p>Non-linear site effects are mainly expected for strong ground motions and sites with soft soils and more recent ground-motion models (GMM) have started to include such effects. Observations in this range are, however, sparse, and most non-linear site amplification models are therefore partly or fully based on numerical simulations. We develop a framework for testing of non-linear site amplification models using data from the comprehensive Kiban-Kyoshin network in Japan. The test is reproducible, following the vision of the Collaboratory for the Study of Earthquake Predictability (CSEP), and takes advantage of new large datasets to evaluate <span>whether or not</span> non-linear site effects predicted by site-amplification models are supported by empirical data. The site amplification models are tested using residuals between the observations and predictions from a GMM based only on magnitude and distance. When the GMM is derived without any site term, the site-specific variability extracted from the residuals is expected to capture the site response of a site. The non-linear site amplification models are tested against a linear amplification model on individual well-record<span>ing</span> stations. Finally, the result is compared to building codes where non-linearity is included. The test shows that for most of the sites selected as having sufficient records, the non-linear site-amplification models do not score better than the linear amplification model. This suggests that including non-linear site amplification in GMMs and building codes may not yet be justified, at least not in the range of ground motions considered in the test (peak ground acceleration < 0.2 g).</p>


2021 ◽  
pp. 875529302110552
Author(s):  
Silvia Mazzoni ◽  
Tadahiro Kishida ◽  
Jonathan P Stewart ◽  
Victor Contreras ◽  
Robert B Darragh ◽  
...  

The Next-Generation Attenuation for subduction zone regions project (NGA-Sub) has developed data resources and ground motion models for global subduction zone regions. Here we describe the NGA-Sub database. To optimize the efficiency of data storage, access, and updating, data resources for the NGA-Sub project are organized into a relational database consisting of 20 tables containing data, metadata, and computed quantities (e.g. intensity measures, distances). A database schema relates fields in tables to each other through a series of primary and foreign keys. Model developers and other users mostly interact with the data through a flatfile generated as a time-stamped output of the database. We describe the structure of the relational database, the ground motions compiled for the project, and the means by which the data can be accessed. The database contains 71,340 three-component records from 1880 earthquakes from seven global subduction zone regions: Alaska, Central America and Mexico, Cascadia, Japan, New Zealand, South America, and Taiwan. These data were processed on a component-specific basis to minimize noise effects in the data and remove baseline drifts. Provided ground motion intensity measures include peak acceleration, peak velocity, and 5%-damped pseudo-spectral accelerations for a range of oscillator periods.


Author(s):  
Paul Somerville

This paper reviews concepts and trends in seismic hazard characterization that have emerged in the past decade, and identifies trends and concepts that are anticipated during the coming decade. New methods have been developed for characterizing potential earthquake sources that use geological and geodetic data in conjunction with historical seismicity data. Scaling relationships among earthquake source parameters have been developed to provide a more detailed representation of the earthquake source for ground motion prediction. Improved empirical ground motion models have been derived from a strong motion data set that has grown markedly over the past decade. However, these empirical models have a large degree of uncertainty because the magnitude - distance - soil category parameterization of these models often oversimplifies reality. This reflects the fact that other conditions that are known to have an important influence on strong ground motions, such as near- fault rupture directivity effects, crustal waveguide effects, and basin response effects, are not treated as parameters of these simple models. Numerical ground motion models based on seismological theory that include these additional effects have been developed and extensively validated against recorded ground motions, and used to estimate the ground motions of past earthquakes and predict the ground motions of future scenario earthquakes. The probabilistic approach to characterizing the ground motion that a given site will experience in the future is very compatible with current trends in earthquake engineering and the development of building codes. Performance based design requires a more comprehensive representation of ground motions than has conventionally been used. Ground motions estimates are needed at multiple annual probability levels, and may need to be specified not only by response spectra but also by suites of strong motion time histories for input into time-domain non-linear analyses of structures.


Sign in / Sign up

Export Citation Format

Share Document