An H/V geostatistical approach for building pseudo-3D Vs models to account for spatial variability in ground response analyses Part II: Application to 1D analyses at two downhole array sites

2021 ◽  
pp. 875529302098198
Author(s):  
Mohamad M Hallal ◽  
Brady R Cox

Common procedures used to account for spatial variability of shear wave velocity (Vs) in one-dimensional (1D) ground response analyses (GRAs), such as stochastic randomization of Vs or increasing small-strain damping, have been shown to improve seismic site response predictions relative to 1D GRAs where no attempts are made to account for spatial variability. However, even after attempting to account for spatial variability using common procedures, 1D GRAs often still yield results that are different than ground motions recorded at many downhole array sites. When 1D predictions differ from observations, the site is typically considered to be too spatially variable to effectively use 1D GRAs. While there is no doubt that some sites are indeed too variable for 1D GRAs, it is also possible that simple 1D analyses could still be effectively used at many sites if spatial variability is accounted for through a more rational, site-specific approach. In this study, an H/V geostatistical approach for building pseudo-3D Vs models is implemented to account for spatial variability in 1D GRAs. The geostatistical approach is used to generate a uniform grid of Vs profiles that have been scaled to match fundamental site frequency estimates from horizontal-to-vertical spectral ratio (H/V) noise measurements. In this article, 1D GRAs are performed for each grid point and the results are statistically combined to reflect the average site response and its variability. This 1D application is demonstrated at the Treasure Island and Delaney Park Downhole Array sites, where it is shown to produce superior fits to the small-strain recorded site response relative to existing approaches used to account for spatial variability in 1D GRAs. Using the proposed approach, we also investigate the lateral area that is likely influencing site response at each site and show that it could extend to significant distances (as much as 1 km) from the boreholes.

2020 ◽  
Author(s):  
Mohamad Mahdi Hallal ◽  
Brady R. Cox

Common procedures used to account for spatial variability of shear wave velocity (Vs) in one-dimensional (1D) ground response analyses (GRAs), such as stochastic randomization of Vs or increasing small-strain damping, have been shown to improve seismic site response predictions relative to 1D GRAs where no attempts are made to account for spatial variability. However, even after attempting to account for spatial variability using common procedures, 1D GRAs often still yield results that are different than ground motions recorded at many downhole array sites. When 1D predictions differ from observations, the site is typically considered to be too spatially variable to effectively use 1D GRAs. While there is no doubt that some sites are indeed too variable for 1D GRAs, it is also possible that simple 1D analyses could still be effectively used at many sites if spatial variability is accounted for via a more rational, site-specific approach. In this study, an H/V geostatistical approach for building pseudo-3D Vs models is implemented to account for spatial variability in 1D GRAs. The geostatistical approach is used to generate a uniform grid of Vs profiles that have been scaled to match fundamental site frequency estimates from horizontal-to-vertical spectral ratio (H/V) noise measurements. In this paper, 1D GRAs are performed for each grid-point and the results are statistically combined to reflect the average site response and its variability. This 1D application is demonstrated at the Treasure Island and Delaney Park Downhole Array sites, where it is shown to produce superior fits to the small-strain recorded site response relative to existing approaches used to account for spatial variability in 1D GRAs. Using the proposed approach, we also investigate the lateral area that is likely influencing site response at each site and show that it could extend to significant distances (as much as 1 km) from the boreholes.


2021 ◽  
pp. 875529302098198
Author(s):  
Mohamad M Hallal ◽  
Brady R Cox

Many recent studies have shown that we are generally unable to accurately replicate recorded ground motions at most borehole array sites using available subsurface geotechnical information and one-dimensional (1D) ground response analyses (GRAs). When 1D GRAs fail to accurately predict recorded site response, the site is often considered too complex to be effectively modeled as 1D. While three-dimensional (3D) numerical GRAs are possible and believed to be more accurate, there is rarely a 3D subsurface model available for these analyses. The lack of affordable and reliable site characterization methods to quantify spatial variability in subsurface conditions, particularly regarding shear wave velocity (Vs) measurements needed for GRAs, has pushed researchers to adopt stochastic approaches, such as Vs randomization and spatially correlated random fields. However, these stochastically generated models require the assumption of generic, or guessed, input parameters, introducing significant uncertainties into the site response predictions. This article describes a new geostatistical approach that can be used for building pseudo-3D Vs models as a means to rationally account for spatial variability in GRAs, increase model accuracy, and reduce uncertainty. Importantly, it requires only a single measured Vs profile and a number of simple, cost-effective, horizontal-to-vertical spectral ratio (H/V) noise measurements. Using Gaussian geostatistical regression, irregularly sampled estimates of fundamental site frequency from H/V measurements ( f0,H/V) are used to generate a uniform grid of f0,H/V across the site with accompanying Vs profiles that have been scaled to match each f0,H/V value, thereby producing a pseudo-3D Vs model. This approach is demonstrated at the Treasure Island and Delaney Park Downhole Array sites (TIDA and DPDA, respectively). While the pseudo-3D Vs models can be used to incorporate spatial variability into 1D, two-dimensional (2D), or 3D GRAs, their implementation in 1D GRAs at TIDA and DPDA is discussed in a companion paper.


2020 ◽  
Author(s):  
Mohamad Mahdi Hallal ◽  
Brady R. Cox

Many recent studies have shown that we are generally unable to accurately replicate recorded ground motions at most borehole array sites using available subsurface geotechnical information and one-dimensional (1D) ground response analyses (GRAs). When 1D GRAs fail to accurately predict recorded site response, the site is often considered too complex to be effectively modeled as 1D. While 3D numerical GRAs are possible and believed to be more accurate, there is rarely a 3D subsurface model available for these analyses. The lack of affordable and reliable site characterization methods to quantify spatial variability in subsurface conditions, particularly regarding shear wave velocity (Vs) measurements needed for GRAs, has pushed researchers to adopt stochastic approaches, such as Vs randomization and spatially correlated random fields. However, these stochastically generated models require the assumption of generic, or assumed, input parameters, introducing significant uncertainties into the site response predictions. This paper describes a new geostatistical approach that can be used for building pseudo-3D Vs models as a means to rationally account for spatial variability in GRAs, increase model accuracy, and reduce uncertainty. Importantly, it requires only a single measured Vs profile and a number of simple, cost-effective, horizontal-to-vertical spectral ratio (H/V) noise measurements. Using Gaussian geostatistical regression, irregularly sampled estimates of fundamental site frequency from H/V measurements (f0,H/V) are used to generate a uniform grid of f0,H/V across the site with accompanying Vs profiles that have been scaled to match each f0,H/V value, thereby producing a pseudo-3D Vs model. This approach is demonstrated at the Treasure Island and Delaney Park Downhole Array sites (TIDA and DPDA, respectively). While the pseudo-3D Vs models can be used to incorporate spatial variability into 1D, 2D, or 3D GRAs, their implementation in 1D GRAs at TIDA and DPDA is discussed in a companion paper.


2019 ◽  
Vol 110 (1) ◽  
pp. 288-294 ◽  
Author(s):  
Yumeng Tao ◽  
Ellen Rathje

ABSTRACT This short note examines the downgoing wave effect and the appearance of pseudoresonances in downhole array data. It is demonstrated that pseudoresonances, distinct from the resonances associated with outcrop conditions, occur for sites with a shallow velocity contrast (VC) or with little to no VC. An approach is outlined to distinguish pseudoresonances from outcrop resonances using the theoretical 1D transfer functions for within and outcrop boundary conditions, as well as the horizontal-to-vertical spectral ratio. This approach is applied to hypothetical shear-wave velocity profiles, as well as three downhole array sites. We establish the importance of distinguishing pseudoresonances from outcrop resonances when using downhole array data to evaluate the accuracy of the 1D site response. For the example downhole array sites shown, the pseudoresonances are not captured well by 1D analysis, whereas the outcrop resonances are captured well. We propose that when evaluating the accuracy of 1D site-response analysis using downhole array data, the comparisons of the empirical and theoretical responses only consider the frequency range associated with outcrop resonances.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xijun Song ◽  
Juan Liu ◽  
Jingyan Lan ◽  
Ting Wang

Two sets of dynamic centrifugal model tests were designed and implemented in this study: the overlying waterless surface and the water-covered surface. Based on the use of the El Centro waves with different intensities as the base input, the seismic time history at the surface of two sets of free site models was obtained. According to the results of the site response at two sets of the free site surface obtained with a traditional spectral ratio, the coherence functions at the surface and the base were used to modify the traditional spectral ratio for analysis and to evaluate the effect of the ground motion coherence function for site amplification. The modal characteristics and the amplification effect of a typical saturated soil water free site were summarized at the same time. The results showed that the ground response results of the two groups of typical free site centrifugal models were greatly influenced by the coherence function. In the low frequency phase, the coherence function of the amplification spectrum of the site response decreased significantly, while in the high frequency phase, the decrease trend decreased. The coherence function had a significant effect on the first-order mode of the free site. The first-order mode frequency and the amplification factor of a typical free site could be identified effectively. Compared with the saturated land free site model, the saturated soil water free site model had higher-order modes due to the overlying water. It was shown that the overlying water, as part of a complex medium system, could be ignored in the site response and basic cycle estimation.


1991 ◽  
Vol 7 (4) ◽  
pp. 551-561 ◽  
Author(s):  
Antonio Rovelli ◽  
Shri K. Singh ◽  
Luca Malagnini ◽  
Alessandro Amato ◽  
Massimo Cocco

We explore the feasibility of the use of microtremors in estimating the amplification of seismic waves at soft sites in Italy. Microtremors were measured at three soft sites and nearby hard sites at night when the cultural noise was minimum. These soft sites were selected as those showing the largest amplifications of ground motion during earthquakes as compared to the records on the hard sites or with respect to the predicted spectra. We compare the soft-to-hard site microtremor spectral ratios with the corresponding acceleration spectral ratios. A rough estimate of the shape and level of spectral amplification is obtained from the microtremor data in all three cases. However, the details of the soft-to-hard site spectral ratio are not reproduced and some differences appear in (a) the frequency at which the maximum amplification occurs, and (b) the bandwidth of the significant amplification. More testing of the method is needed before its wider use for microzonation in Italy can be recommended.


2017 ◽  
Vol 98 ◽  
pp. 107-118 ◽  
Author(s):  
Luis Fabian Bonilla ◽  
Philippe Guéguen ◽  
Fernando Lopez-Caballero ◽  
E. Diego Mercerat ◽  
Céline Gélis

Sign in / Sign up

Export Citation Format

Share Document