An H/V geostatistical approach for building pseudo-3D Vs models to account for spatial variability in ground response analyses Part I: Model development

2021 ◽  
pp. 875529302098198
Author(s):  
Mohamad M Hallal ◽  
Brady R Cox

Many recent studies have shown that we are generally unable to accurately replicate recorded ground motions at most borehole array sites using available subsurface geotechnical information and one-dimensional (1D) ground response analyses (GRAs). When 1D GRAs fail to accurately predict recorded site response, the site is often considered too complex to be effectively modeled as 1D. While three-dimensional (3D) numerical GRAs are possible and believed to be more accurate, there is rarely a 3D subsurface model available for these analyses. The lack of affordable and reliable site characterization methods to quantify spatial variability in subsurface conditions, particularly regarding shear wave velocity (Vs) measurements needed for GRAs, has pushed researchers to adopt stochastic approaches, such as Vs randomization and spatially correlated random fields. However, these stochastically generated models require the assumption of generic, or guessed, input parameters, introducing significant uncertainties into the site response predictions. This article describes a new geostatistical approach that can be used for building pseudo-3D Vs models as a means to rationally account for spatial variability in GRAs, increase model accuracy, and reduce uncertainty. Importantly, it requires only a single measured Vs profile and a number of simple, cost-effective, horizontal-to-vertical spectral ratio (H/V) noise measurements. Using Gaussian geostatistical regression, irregularly sampled estimates of fundamental site frequency from H/V measurements ( f0,H/V) are used to generate a uniform grid of f0,H/V across the site with accompanying Vs profiles that have been scaled to match each f0,H/V value, thereby producing a pseudo-3D Vs model. This approach is demonstrated at the Treasure Island and Delaney Park Downhole Array sites (TIDA and DPDA, respectively). While the pseudo-3D Vs models can be used to incorporate spatial variability into 1D, two-dimensional (2D), or 3D GRAs, their implementation in 1D GRAs at TIDA and DPDA is discussed in a companion paper.

2020 ◽  
Author(s):  
Mohamad Mahdi Hallal ◽  
Brady R. Cox

Many recent studies have shown that we are generally unable to accurately replicate recorded ground motions at most borehole array sites using available subsurface geotechnical information and one-dimensional (1D) ground response analyses (GRAs). When 1D GRAs fail to accurately predict recorded site response, the site is often considered too complex to be effectively modeled as 1D. While 3D numerical GRAs are possible and believed to be more accurate, there is rarely a 3D subsurface model available for these analyses. The lack of affordable and reliable site characterization methods to quantify spatial variability in subsurface conditions, particularly regarding shear wave velocity (Vs) measurements needed for GRAs, has pushed researchers to adopt stochastic approaches, such as Vs randomization and spatially correlated random fields. However, these stochastically generated models require the assumption of generic, or assumed, input parameters, introducing significant uncertainties into the site response predictions. This paper describes a new geostatistical approach that can be used for building pseudo-3D Vs models as a means to rationally account for spatial variability in GRAs, increase model accuracy, and reduce uncertainty. Importantly, it requires only a single measured Vs profile and a number of simple, cost-effective, horizontal-to-vertical spectral ratio (H/V) noise measurements. Using Gaussian geostatistical regression, irregularly sampled estimates of fundamental site frequency from H/V measurements (f0,H/V) are used to generate a uniform grid of f0,H/V across the site with accompanying Vs profiles that have been scaled to match each f0,H/V value, thereby producing a pseudo-3D Vs model. This approach is demonstrated at the Treasure Island and Delaney Park Downhole Array sites (TIDA and DPDA, respectively). While the pseudo-3D Vs models can be used to incorporate spatial variability into 1D, 2D, or 3D GRAs, their implementation in 1D GRAs at TIDA and DPDA is discussed in a companion paper.


2020 ◽  
Author(s):  
Mohamad Mahdi Hallal ◽  
Brady R. Cox

Common procedures used to account for spatial variability of shear wave velocity (Vs) in one-dimensional (1D) ground response analyses (GRAs), such as stochastic randomization of Vs or increasing small-strain damping, have been shown to improve seismic site response predictions relative to 1D GRAs where no attempts are made to account for spatial variability. However, even after attempting to account for spatial variability using common procedures, 1D GRAs often still yield results that are different than ground motions recorded at many downhole array sites. When 1D predictions differ from observations, the site is typically considered to be too spatially variable to effectively use 1D GRAs. While there is no doubt that some sites are indeed too variable for 1D GRAs, it is also possible that simple 1D analyses could still be effectively used at many sites if spatial variability is accounted for via a more rational, site-specific approach. In this study, an H/V geostatistical approach for building pseudo-3D Vs models is implemented to account for spatial variability in 1D GRAs. The geostatistical approach is used to generate a uniform grid of Vs profiles that have been scaled to match fundamental site frequency estimates from horizontal-to-vertical spectral ratio (H/V) noise measurements. In this paper, 1D GRAs are performed for each grid-point and the results are statistically combined to reflect the average site response and its variability. This 1D application is demonstrated at the Treasure Island and Delaney Park Downhole Array sites, where it is shown to produce superior fits to the small-strain recorded site response relative to existing approaches used to account for spatial variability in 1D GRAs. Using the proposed approach, we also investigate the lateral area that is likely influencing site response at each site and show that it could extend to significant distances (as much as 1 km) from the boreholes.


2021 ◽  
pp. 875529302098198
Author(s):  
Mohamad M Hallal ◽  
Brady R Cox

Common procedures used to account for spatial variability of shear wave velocity (Vs) in one-dimensional (1D) ground response analyses (GRAs), such as stochastic randomization of Vs or increasing small-strain damping, have been shown to improve seismic site response predictions relative to 1D GRAs where no attempts are made to account for spatial variability. However, even after attempting to account for spatial variability using common procedures, 1D GRAs often still yield results that are different than ground motions recorded at many downhole array sites. When 1D predictions differ from observations, the site is typically considered to be too spatially variable to effectively use 1D GRAs. While there is no doubt that some sites are indeed too variable for 1D GRAs, it is also possible that simple 1D analyses could still be effectively used at many sites if spatial variability is accounted for through a more rational, site-specific approach. In this study, an H/V geostatistical approach for building pseudo-3D Vs models is implemented to account for spatial variability in 1D GRAs. The geostatistical approach is used to generate a uniform grid of Vs profiles that have been scaled to match fundamental site frequency estimates from horizontal-to-vertical spectral ratio (H/V) noise measurements. In this article, 1D GRAs are performed for each grid point and the results are statistically combined to reflect the average site response and its variability. This 1D application is demonstrated at the Treasure Island and Delaney Park Downhole Array sites, where it is shown to produce superior fits to the small-strain recorded site response relative to existing approaches used to account for spatial variability in 1D GRAs. Using the proposed approach, we also investigate the lateral area that is likely influencing site response at each site and show that it could extend to significant distances (as much as 1 km) from the boreholes.


1984 ◽  
Author(s):  
Joan G. Moore ◽  
John Moore

The usefulness of three-dimensional flow calculations has frequently been obscured by the numerical mixing present in the calculation methods. This paper describes a new method of forming the finite difference momentum equations. The new method results in well posed equations which introduce no numerical mixing. It may be used with orthogonal or non-orthogonal grids and with uniform or highly non-uniform grid spacing. The method is demonstrated by comparing it with upwind differencing on the calculation of a simple example. It is then used in an elliptic pressure-correction calculation procedure to calculate a leading edge horseshoe vortex about a Rankine half body. The results compare well with the experimental data presented in a companion paper.


2019 ◽  
Vol 35 (2) ◽  
pp. 787-814 ◽  
Author(s):  
Joseph Harmon ◽  
Youssef M. A. Hashash ◽  
Jonathan P. Stewart ◽  
Ellen M. Rathje ◽  
Kenneth W. Campbell ◽  
...  

This paper presents the development of large-scale simulation-based data sets used to inform new site amplification models for Central and Eastern North America (CENA). Linear elastic, equivalent linear, and nonlinear one-dimensional site response simulations of site conditions in CENA are employed. An analysis tree is introduced to capture the range of expected CENA geologic conditions. Independent variables include the following: (1) representative and random shear wave velocity ( VS) profiles using data from the literature; (2) randomized, nonlinear shear modulus reduction and damping vs. shear strain curves with constraint on soil shear strength; and (3) outcrop ground motions representative of the VS = 3,000 m/s CENA reference rock condition. The resulting database of 1,747,278 simulations is conditioned on several parameters relevant to site amplification, which facilitates model development that is the subject of a companion paper. The database is openly available for use by other researchers.


2007 ◽  
Vol 42 (4) ◽  
pp. 303-310 ◽  
Author(s):  
Zhi Chen ◽  
Lin Zhao ◽  
Kenneth Lee ◽  
Charles Hannath

Abstract There has been a growing interest in assessing the risks to the marine environment from produced water discharges. This study describes the development of a numerical approach, POM-RW, based on an integration of the Princeton Ocean Model (POM) and a Random Walk (RW) simulation of pollutant transport. Specifically, the POM is employed to simulate local ocean currents. It provides three-dimensional hydrodynamic input to a Random Walk model focused on the dispersion of toxic components within the produced water stream on a regional spatial scale. Model development and field validation of the predicted current field and pollutant concentrations were conducted in conjunction with a water quality and ecological monitoring program for an offshore facility located on the Grand Banks of Canada. Results indicate that the POM-RW approach is useful to address environmental risks associated with the produced water discharges.


1996 ◽  
Vol 33 (4-5) ◽  
pp. 233-240 ◽  
Author(s):  
F. S. Goderya ◽  
M. F. Dahab ◽  
W. E. Woldt ◽  
I. Bogardi

A methodology for incorporation of spatial variability in modeling non-point source groundwater nitrate contamination is presented. The methodology combines geostatistical simulation and unsaturated zone modeling for estimating the amount of nitrate loading to groundwater. Three dimensional soil nitrogen variability and 2-dimensional crop yield variability are used in quantifying potential benefits of spatially distributed nitrogen input. This technique, in combination with physical and chemical measurements, is utilized as a means of illustrating how the spatial statistical properties of nitrate leaching can be obtained for different scenarios of fixed and variable rate nitrogen applications.


2021 ◽  
pp. 105678952110286
Author(s):  
H Zhang ◽  
J Woody Ju ◽  
WL Zhu ◽  
KY Yuan

In a recent companion paper, a three-dimensional isotropic elastic micromechanical framework was developed to predict the mechanical behaviors of the innovative asphalt patching materials reinforced with a high-toughness, low-viscosity nanomolecular resin, dicyclopentadiene (DCPD), under the splitting tension test (ASTM D6931). By taking advantage of the previously proposed isotropic elastic-damage framework and considering the plastic behaviors of asphalt mastic, a class of elasto-damage-plastic model, based on a continuum thermodynamic framework, is proposed within an initial elastic strain energy-based formulation to predict the behaviors of the innovative materials more accurately. Specifically, the governing damage evolution is characterized through the effective stress concept in conjunction with the hypothesis of strain equivalence; the plastic flow is introduced by means of an additive split of the stress tensor. Corresponding computational algorithms are implemented into three-dimensional finite elements numerical simulations, and the outcomes are systemically compared with suitably designed experimental results.


Sign in / Sign up

Export Citation Format

Share Document