downhole array
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
pp. 875529302098198
Author(s):  
Mohamad M Hallal ◽  
Brady R Cox

Common procedures used to account for spatial variability of shear wave velocity (Vs) in one-dimensional (1D) ground response analyses (GRAs), such as stochastic randomization of Vs or increasing small-strain damping, have been shown to improve seismic site response predictions relative to 1D GRAs where no attempts are made to account for spatial variability. However, even after attempting to account for spatial variability using common procedures, 1D GRAs often still yield results that are different than ground motions recorded at many downhole array sites. When 1D predictions differ from observations, the site is typically considered to be too spatially variable to effectively use 1D GRAs. While there is no doubt that some sites are indeed too variable for 1D GRAs, it is also possible that simple 1D analyses could still be effectively used at many sites if spatial variability is accounted for through a more rational, site-specific approach. In this study, an H/V geostatistical approach for building pseudo-3D Vs models is implemented to account for spatial variability in 1D GRAs. The geostatistical approach is used to generate a uniform grid of Vs profiles that have been scaled to match fundamental site frequency estimates from horizontal-to-vertical spectral ratio (H/V) noise measurements. In this article, 1D GRAs are performed for each grid point and the results are statistically combined to reflect the average site response and its variability. This 1D application is demonstrated at the Treasure Island and Delaney Park Downhole Array sites, where it is shown to produce superior fits to the small-strain recorded site response relative to existing approaches used to account for spatial variability in 1D GRAs. Using the proposed approach, we also investigate the lateral area that is likely influencing site response at each site and show that it could extend to significant distances (as much as 1 km) from the boreholes.


2020 ◽  
Vol 92 (1) ◽  
pp. 151-169 ◽  
Author(s):  
Tom Kettlety ◽  
James P. Verdon ◽  
Antony Butcher ◽  
Matthew Hampson ◽  
Lucy Craddock

Abstract Hydraulic fracturing (HF) at Preston New Road (PNR), Lancashire, United Kingdom, in August 2019, induced a number of felt earthquakes. The largest event (ML 2.9) occurred on 26 August 2019, approximately three days after HF operations at the site had stopped. Following this, in November 2019, the United Kingdom Government announced a moratorium on HF for shale gas in England. Here we provide an analysis of the microseismic observations made during this case of HF-induced fault activation. More than 55,000 microseismic events were detected during operations using a downhole array, the vast majority measuring less than Mw 0. Event locations revealed the growth of hydraulic fractures and their interaction with several preexisting structures. The spatiotemporal distribution of events suggests that a hydraulic pathway was created between the injection points and a nearby northwest–southeast-striking fault, on which the largest events occurred. The aftershocks of the ML 2.9 event clearly delineate the rupture plane, with their spatial distribution forming a halo of activity around the mainshock rupture area. Across clusters of events, the magnitude distributions are distinctly bimodal, with a lower Gutenberg–Richter b-value for events above Mw 0, suggesting a break in scaling between events associated with hydraulic fracture propagation, and events associated with activation of the fault. This poses a challenge for mitigation strategies that rely on extrapolating microseismicity observed during injection to forecast future behavior. The activated fault was well oriented for failure in the regional stress field, significantly more so than the fault activated during previous operations at PNR in 2018. The differing orientations within the stress field likely explain why this PNR-2 fault produced larger events compared with the 2018 sequence, despite receiving a smaller volume of injected fluid. This indicates that fault orientation and in situ stress conditions play a key role in controlling the severity of seismicity induced by HF.


2020 ◽  
Vol 91 (6) ◽  
pp. 3381-3390
Author(s):  
Hai-Yun Wang ◽  
Wei-Ping Jiang

Abstract The shear-wave velocity (VS) in soil is an important parameter to characterize dynamic soil properties. The Delaney Park downhole array was deployed in 2003 without measuring the shear- and compression-wave velocity (VS and VP) profiles. Thornley et al. (2019) measured the VS and VP profiles using the downhole method after the sensor was removed from the 61 m borehole with casing in the array. However, the waves propagating along the casing wall may have a great influence on the recognition of the first arrival of waves propagating in the soil. Using horizontal and vertical components of weak-motion data of eight local earthquakes recorded by the array, in situ VS and VP profiles were assessed by the seismic interferometry based on deconvolution, respectively. The results are as follows. The VS and VP profiles computed by this study and measured by Thornley et al. (2019) are in relatively good agreement at a depth of 10–45 m and at a depth of 30–45 m, respectively, and in very poor agreement at other depths. The average VS profiles computed by this study are more consistent with the derived VS from the standard penetration test data at the site with slower near-surface velocities relative to the downhole logging analysis. There are strong anisotropy in the strata below 45 m and weak anisotropy with various degrees at various depths in the strata above 45 m.


2020 ◽  
Author(s):  
Mohamad Mahdi Hallal ◽  
Brady R. Cox

Common procedures used to account for spatial variability of shear wave velocity (Vs) in one-dimensional (1D) ground response analyses (GRAs), such as stochastic randomization of Vs or increasing small-strain damping, have been shown to improve seismic site response predictions relative to 1D GRAs where no attempts are made to account for spatial variability. However, even after attempting to account for spatial variability using common procedures, 1D GRAs often still yield results that are different than ground motions recorded at many downhole array sites. When 1D predictions differ from observations, the site is typically considered to be too spatially variable to effectively use 1D GRAs. While there is no doubt that some sites are indeed too variable for 1D GRAs, it is also possible that simple 1D analyses could still be effectively used at many sites if spatial variability is accounted for via a more rational, site-specific approach. In this study, an H/V geostatistical approach for building pseudo-3D Vs models is implemented to account for spatial variability in 1D GRAs. The geostatistical approach is used to generate a uniform grid of Vs profiles that have been scaled to match fundamental site frequency estimates from horizontal-to-vertical spectral ratio (H/V) noise measurements. In this paper, 1D GRAs are performed for each grid-point and the results are statistically combined to reflect the average site response and its variability. This 1D application is demonstrated at the Treasure Island and Delaney Park Downhole Array sites, where it is shown to produce superior fits to the small-strain recorded site response relative to existing approaches used to account for spatial variability in 1D GRAs. Using the proposed approach, we also investigate the lateral area that is likely influencing site response at each site and show that it could extend to significant distances (as much as 1 km) from the boreholes.


2020 ◽  
Vol 110 (3) ◽  
pp. 1323-1337 ◽  
Author(s):  
Elnaz Seylabi ◽  
Andrew M. Stuart ◽  
Domniki Asimaki

ABSTRACT We present a sequential data assimilation algorithm based on the ensemble Kalman inversion to estimate the near-surface shear-wave velocity profile and damping; this is applicable when heterogeneous data and a priori information that can be represented in forms of (physical) equality and inequality constraints in the inverse problem are available. Although noninvasive methods, such as surface-wave testing, are efficient and cost-effective methods for inferring an VS profile, one should acknowledge that site characterization using inverse analyses can yield erroneous results associated with the lack of inverse problem uniqueness. One viable solution to alleviate the unsuitability of the inverse problem is to enrich the prior knowledge and/or the data space with complementary observations. In the case of noninvasive methods, the pertinent data are the dispersion curve of surface waves, typically resolved by means of active source methods at high frequencies and passive methods at low frequencies. To improve the inverse problem suitability, horizontal-to-vertical spectral ratio data are commonly used jointly with the dispersion data in the inversion. In this article, we show that the joint inversion of dispersion and strong-motion downhole array data can also reduce the margins of uncertainty in the VS profile estimation. This is because acceleration time series recorded at downhole arrays include both body and surface waves and therefore can enrich the observational data space in the inverse problem setting. We also show how the proposed algorithm can be modified to systematically incorporate physical constraints that further enhance its suitability. We use both synthetic and real data to examine the performance of the proposed framework in estimation of the VS profile and damping at the Garner Valley downhole array and compare them against the VS estimations in previous studies.


2020 ◽  
Author(s):  
Adam Klinger ◽  
Max Werner

<p>Hydraulic fracturing underpins tight shale gas exploration but can induce seismicity. During stimulations, operators carefully monitor the spatio-temporal distribution and source parameters of seismic events to be able to respond to any changes and potentially reduce the chances of fault reactivation. Downhole arrays of geophones offer unique access to (sub) microseismic source parameters and can provide new insights into the processes that induce seismicity. For example, variations in stress drop might indicate changes in the seismic response to injection (e.g. pore pressure variations). However, borehole arrays of geophones and the high frequencies of small events also present new challenges for source characterization. Stress drop depends on the corner frequency, a parameter with great uncertainty that is sensitive to attenuation, especially for (sub-) microseismicity. Here, we explore the behavior of microseismic spectra measured along borehole arrays and the effect of attenuation on estimates of corner frequency. We examine a dataset of over 90,000 microseismic events recorded during hydraulic fracturing in the Horn River Basin, British Columbia. We only see clear phase arrivals for events M<sub>w</sub> > -1 and restrict our initial analysis to a subsample of M<sub>w</sub>> 0 events that vary in space and time.</p><p>Our first observation is that some stations in the borehole array show an unexpected increase in the displacement energy from the low frequency to the corner frequency in the P and SH phases as well as high-frequency energy spikes inconsistent with a smooth Brune source model. A shorter time window that only captures the direct arrival results in a flatter low frequency plateau and reduces the amplitude of the pulses but compromises the resolution. The spikes may be caused by high frequency coda energy. We also find that corner frequency estimates decrease with decreasing station depth along the array in both the P and SH phases, a likely result of high frequency attenuation along the downhole array. The findings suggest Brune corner frequencies of moment magnitudes < 0.5 may not be resolvable even with downhole arrays at close proximity. Our results will eventually contribute to a better characterization of microseismic source parameters measured in borehole arrays.</p><p> </p>


2020 ◽  
Author(s):  
Ping Zhang ◽  
Wael Abdallah ◽  
Shouxiang Ma ◽  
Chengbing Liu

2019 ◽  
Vol 110 (1) ◽  
pp. 288-294 ◽  
Author(s):  
Yumeng Tao ◽  
Ellen Rathje

ABSTRACT This short note examines the downgoing wave effect and the appearance of pseudoresonances in downhole array data. It is demonstrated that pseudoresonances, distinct from the resonances associated with outcrop conditions, occur for sites with a shallow velocity contrast (VC) or with little to no VC. An approach is outlined to distinguish pseudoresonances from outcrop resonances using the theoretical 1D transfer functions for within and outcrop boundary conditions, as well as the horizontal-to-vertical spectral ratio. This approach is applied to hypothetical shear-wave velocity profiles, as well as three downhole array sites. We establish the importance of distinguishing pseudoresonances from outcrop resonances when using downhole array data to evaluate the accuracy of the 1D site response. For the example downhole array sites shown, the pseudoresonances are not captured well by 1D analysis, whereas the outcrop resonances are captured well. We propose that when evaluating the accuracy of 1D site-response analysis using downhole array data, the comparisons of the empirical and theoretical responses only consider the frequency range associated with outcrop resonances.


Sign in / Sign up

Export Citation Format

Share Document