Muscle Quality, Measured by Ultrasound-Derived Corrected Echo Intensity, Does not Affect Changes in Cross-sectional Area of the Vastus Lateralis Following Recumbent Rest

2020 ◽  
pp. 875647932096727
Author(s):  
Alyssa N. Varanoske ◽  
Nicholas A. Coker ◽  
Bri-Ana D. I. Johnson ◽  
Tal Belity ◽  
Adam J. Wells

Objective: Recumbent rest elicits a decrease in muscle size of the lower extremity, but the extent of decrease may be related to differences in muscle quality. This could have implications for ultrasound-derived measures of muscle size, particularly in individuals with a large proportion of intramuscular contractile elements. The research objective was to determine whether decreases in muscle size following recumbent rest are related to ultrasound-derived corrected echo intensity in resistance-trained males. Methods: Cross-sectional area (CSA), echo intensity (EI), subcutaneous fat thickness (SFT), and EI corrected for SFT (EICor) of the vastus lateralis (VL) were measured via ultrasonography in 30 resistance-trained males. Measures were obtained immediately following recumbency (T0) and 15 minutes after recumbency (T15). The association between EICor and percentage change in CSA (%ΔCSA) from T0 to T15 was examined. Comparisons of morphological characteristics were examined between a subset of participants with the lowest (LO; n = 10; <33rd percentile) and highest (HI; n = 10; >66th percentile) EICor. Results: EICor was not correlated with %ΔCSA ( P = .151), and the decrease in CSA from T0 to T15 did not differ between the LO and HI groups. Conclusions: Muscle quality (EICor) is not related to the decrease in CSA of the VL following recumbent rest among resistance-trained, young males. The time frame of muscle CSA acquisition should not differ based solely on differences in muscle quality.

2021 ◽  
Vol 21 (84) ◽  
pp. e7-e11
Author(s):  
Eric J. Sobolewski ◽  
◽  
Leah D. Wein ◽  
Jacquelyn M. Crow ◽  
Kaitlyn M. Carpenter ◽  
...  

Introduction: The use of ultrasound images for analyzing muscle quality and size is continuing to grow in the literature. However, many of these manuscripts fail to properly describe their measurement techniques and steps involved in analyzing ultrasound images. Aim of this study: To evaluate the intra- and inter-rater reliability of the steps involved when analyzing ultrasound images to measure cross-sectional area and echo intensity. Material and methods: Twenty ultrasound images of the rectus femoris and vastus lateralis images were blinded and replicated, and then analyzed by experienced raters. The raters then were asked to analyze the images using open-source software for scaling measurements, subcutaneous fat thickness, cross-sectional area, and echo intensity. Matched image values for each measurement where compared for intra- and inter-rater reliability. Results: Intra-rater reliability ranged from fair (ICC3,1 = 0.32) to high (0.98), with echo intensity values being the least reliable (>0.55), and scaling and depth measurements being the most reliable (<0.85). Inter-rater reliability ranged from good (0.77) to high (0.97). Conclusion: Ultrasound- derived measures of cross-sectional area and echo intensity can be measured reliably, with echo intensity being the most difficult to replicate. However, reliability measures are unique to the rater and study and, therefore, should be clearly reported in every paper.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8224 ◽  
Author(s):  
Rob J. MacLennan ◽  
Michael Sahebi ◽  
Nathan Becker ◽  
Ethan Davis ◽  
Jeanette M. Garcia ◽  
...  

Background Disuse of a muscle group, which occurs during bedrest, spaceflight, and limb immobilization, results in atrophy. It is unclear, however, if the magnitude of decline in skeletal muscle quality is similar to that for muscle size. The purpose of this study was to examine the effects of two weeks of knee joint immobilization on vastus lateralis and rectus femoris echo intensity and cross-sectional area. Methods Thirteen females (mean ± SD age = 21 ± 2 years) underwent two weeks of left knee joint immobilization via ambulating on crutches and use of a brace. B-mode ultrasonography was utilized to obtain transverse plane images of the immobilized and control vastus lateralis and rectus femoris at pretest and following immobilization. Effect size statistics and two-way repeated measures analyses of variance were used to interpret the data. Results No meaningful changes were demonstrated for the control limb and the rectus femoris of the immobilized limb. Analyses showed a large increase in vastus lateralis echo intensity (i.e., decreased muscle quality) for the immobilized limb (p = .006, Cohen’s d = .918). For vastus lateralis cross-sectional area, no time × limb interaction was observed (p = .103), but the effect size was moderate (d = .570). There was a significant association between the increase in vastus lateralis echo intensity and the decrease in cross-sectional area (r =  − .649, p = .016). Conclusion In female participants, two weeks of knee joint immobilization resulted in greater deterioration of muscle quality than muscle size. Echo intensity appears to be an attractive clinical tool for monitoring muscle quality during disuse.


2021 ◽  
pp. 1-9
Author(s):  
Ahalee C. Farrow ◽  
Ty B. Palmer

This study aimed to examine the effects of age on hip flexion maximal and rapid strength and rectus femoris (RF) muscle size and composition in men. Fifteen young (25 [3] y) and 15 older (73 [4] y) men performed isometric hip flexion contractions to examine peak torque and absolute and normalized rate of torque development (RTD) at time intervals of 0 to 100 and 100 to 200 milliseconds. Ultrasonography was used to examine RF muscle cross-sectional area and echo intensity. Peak torque, absolute RTD at 0 to 100 milliseconds, and absolute and normalized RTD at 100 to 200 milliseconds were significantly lower (P = .004–.045) in the old compared with the young men. The older men exhibited lower cross-sectional area (P = .015) and higher echo intensity (P = .007) than the young men. Moreover, there were positive relationships between cross-sectional area and absolute RTD at 0 to 100 milliseconds (r = .400) and absolute RTD at 100 to 200 milliseconds (r = .450) and negative relationships between echo intensity and absolute RTD at 100 to 200 milliseconds (r = −.457) and normalized RTD at 100 to 200 milliseconds (r = −.373). These findings indicate that hip flexion maximal and rapid strength and RF muscle size and composition decrease in old age. The relationships observed between ultrasound-derived RF parameters and measurements of RTD suggest that these age-related declines in muscle size and composition may be relevant to hip flexion rapid torque production.


Author(s):  
Cassio V. Ruas ◽  
Ronei S. Pinto ◽  
Camila D. Lima ◽  
Pablo B. Costa ◽  
Lee E. Brown

Ultrasound muscle images have been extensively used as tools for investigating, diagnosing and monitoring thigh muscles. However, there is a lack of information examining ultrasound reliability of quadriceps and hamstrings images for research and clinical use. Objectives: To determine the reliability of muscle thickness (MT), echo intensity (EI) and cross sectional area (CSA) of quadriceps and hamstrings muscle groups. Methods: Single transverse images of the rectus femoris (RF), vastus intermedius (VI), vastus medialis (VM), vastus lateralis (VL), biceps femoris long head (BFlh), semitendinosus (ST), and semimembranosus (SM) muscles were scanned in the right and left legs of ten healthy collegiate men (age 23.4 ± 2.2 yrs, mass 71.7 ± 11.7 kg, height 1.73 ± 0.06 m) between two sessions with one day interval. Intraclass correlation coefficients (ICCs), standard error of measurement (SEM), and minimum difference to be considered “real” (MD) were measured for MT, EI, and CSA. Results: A range of 0.97-0.99, 0.83-0.88, and 0.86-0.97 (ICC); 0.72-1.38, 2.73-3.41, and 0.36-1.04 (SEM); and 2.01-3.82, 7.56-9.46, and 0.99-2.89 (MD) were found for quadriceps muscles, and 0.93-0.99, 0.74-0.90, and 0.89-0.96 (ICC); 0.73-1.94, 3.29-4.98, and 0.69-1.08 (SEM); and 2.03-5.38, 9.13-13.81, and 1.91-2.98 (MD) were found for hamstrings muscles. Conclusions: These results suggest that ultrasound imaging of both quadriceps and hamstrings muscle architecture is a reliable technique for assessing thigh musculoskeletal tissue. The anatomical sites, as well as ultrasound adjustments, images, and results utilized here may assist future researchers and clinicians as reference tools when measuring quadriceps and hamstrings musculature. 


2017 ◽  
Vol 52 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Erica J. Roelofs ◽  
Abbie E. Smith-Ryan ◽  
Eric T. Trexler ◽  
Katie R. Hirsch

Context: Previous researchers have indicated the importance of body composition and muscle quality in athletic performance. However, body composition and muscle-quality measures in swimmers and divers over a training season have yet to be evaluated. Objective: To identify changes in body composition and muscle characteristics over a competitive season and identify relationships between these variables and performance in National Collegiate Athletic Association Division I swimmers and divers. Design: Cross-sectional study. Setting: University laboratory. Patients or Other Participants: A total of 17 collegiate swimmers and divers (age = 18.6 ± 0.7 years, height = 175.8 ± 4.0 cm, body mass = 69.7 ± 7.0 kg). Main Outcome Measure(s): At preseason and postseason, body composition in each participant was assessed using dual-energy x-ray absorptiometry. Echo intensity and muscle cross-sectional area were determined from an ultrasound panoramic scan of the vastus lateralis muscle. Race times were obtained from the university athletic Web site. Results: Lean mass (P = .016), arm lean mass (P = .008), and muscle cross-sectional area (P = .03) were higher at postseason, whereas body fat percentage (P = .041) and echo intensity (P = .0007) were lower at postseason. Performance improved from preseason to postseason in all event groups (sprinters, distance swimmers, and divers; P &lt; .05). Conclusions: Body composition and muscle characteristics improved through 1 training season, which may have implications for performance. Quantifying body composition and muscle characteristics may be beneficial for professionals who work with athletes in order to improve performance and prevent injury.


2022 ◽  
pp. 110956
Author(s):  
Marcel B. Lanza ◽  
Hugo C. Martins-Costa ◽  
Carolina C. De Souza ◽  
Fernando V. Lima ◽  
Rodrigo C. Diniz ◽  
...  

1999 ◽  
Vol 276 (2) ◽  
pp. R591-R596 ◽  
Author(s):  
H. Green ◽  
C. Goreham ◽  
J. Ouyang ◽  
M. Ball-Burnett ◽  
D. Ranney

To examine the hypothesis that increases in fiber cross-sectional area mediated by high-resistance training (HRT) would result in a decrease in fiber capillarization and oxidative potential, regardless of fiber type, we studied six untrained males (maximum oxygen consumption, 45.6 ± 2.3 ml ⋅ kg−1 ⋅ min−1; mean ± SE) participating in a 12-wk program designed to produce a progressive hypertrophy of the quadriceps muscle. The training sessions, which were conducted 3 times/wk, consisted of three sets of three exercises, each performed for 6–8 repetitions maximum (RM). Measurements of fiber-type distribution obtained from tissue extracted from the vastus lateralis at 0, 4, 7, and 12 wk indicated reductions ( P < 0.05) in type IIB fibers (15.1 ± 2.1% vs. 7.2 ± 1.3%) by 4 wk in the absence of changes in the other fiber types (types I, IIA, and IIAB). Training culminated in a 17% increase ( P < 0.05) in cross-sectional area by 12 wk with initial increases observed at 4 wk. The increase was independent of fiber type-specific changes. The number of capillaries in contact with each fiber type increased by 12 wk, whereas capillary contacts-to-fiber area ratios remained unchanged. In a defined cross-sectional field, HRT also increased the capillaries per fiber at 12 wk. Training failed to alter cellular oxidative potential, as measured by succinic dehydrogenase (SDH) activity, regardless of fiber type and training duration. It is concluded that modest hypertrophy induced by HRT does not compromise cellular tissue capillarization and oxidative potential regardless of fiber type.


2020 ◽  
Vol 22 (2) ◽  
pp. 152 ◽  
Author(s):  
Chrysostomos Sahinis ◽  
Eleftherios Kellis ◽  
Nikiforos Galanis ◽  
Konstantinos Dafkou ◽  
Athanasios Ellinoudis

Aim: Τo examine the inter- and intra-muscular differences in the anatomical cross-sectional area (CSA) of the quadricep muscles, using extended - field of view (EFOV) ultrasonography (US).Material and methods: Panoramic transverse US images of the thigh were acquired from 10 young participants at five different locations across the thigh, in two sessions, spaced a week apart. The CSA of the vastus medialis (VM), rectus femoris (RF), vastus intermedius (VI), vastus lateralis (VL) and tensor vastus intermedius (TVI) was quantified.Results: The intraclass correlation coefficients ranged from 0.75 to 0.97 and the standard error of measurement ranged from 0.78% to 6.61%, indicating high test-retest reliability. Analysis of the variance indicated that among the 5 quadriceps muscles the VL and the RF displayed the greater CSA proximally, the VI medially and the VM distally across the thigh (p <0.05). No differences in the quadriceps CSA measured with and without including the TVI were found (p >0.05).Conclusions: The EFOV US technique provides transverse scans of the quadriceps muscle in vivo and allowed a reliable and non-invasive determination of CSA at a low cost. Evaluation of CSA along the thigh largely depends on the measurement site. Future studies that examine the quadriceps CSA using EFOV after any form of intervention should consider changes of at least 6.5% as meaningful.


2019 ◽  
Vol 47 (5) ◽  
pp. 423-434 ◽  
Author(s):  
Luke M Weinel ◽  
Matthew J Summers ◽  
Lee-Anne Chapple

Muscle wasting in the intensive care unit (ICU) is common and may impair functional recovery. Ultrasonography (US) presents a modern solution to quantify skeletal muscle size and monitor muscle wasting. However, no standardised methodology for the conduct of ultrasound-derived quadriceps muscle layer thickness or cross-sectional area in this population exists. The aim of this study was to compare methodologies reported for the measurement of quadriceps muscle layer thickness (MLT) and cross-sectional area (CSA) using US in critically ill patients. Databases PubMed, Ovid, Embase, and CINAHL were searched for original research publications that reported US-derived quadriceps MLT and/or CSA conducted in critically ill adult patients. Data were extracted from eligible studies on parameters relating to US measurement including anatomical location, patient positioning, operator technique and image analysis. It was identified that there was a clear lack of reported detail and substantial differences in the reported methodology used for all parameters. A standardised protocol and minimum reporting standards for US-derived measurement of quadriceps muscle size in ICU is required to allow for consistent measurement techniques and hence interpretation of results.


1994 ◽  
Vol 77 (5) ◽  
pp. 2385-2390 ◽  
Author(s):  
C. A. Allemeier ◽  
A. C. Fry ◽  
P. Johnson ◽  
R. S. Hikida ◽  
F. C. Hagerman ◽  
...  

Eleven men sprint trained two to three times per week for 6 wk to investigate possible exercise-induced slow-to-fast fiber type conversions. Six individuals served as controls. Both groups were tested at the beginning and end of the study to determine anaerobic performance and maximal oxygen consumption. In addition, pre- and postbiopsies were extracted from the vastus lateralis muscle and were analyzed for fiber type composition, cross-sectional area, and myosin heavy chain (MHC) content. No significant changes were found in anaerobic or aerobic performance variables for either group. Although a trend was found for a decrease in the percentage of type IIb fibers, high-intensity sprint cycle training caused no significant changes in the fiber type distribution or cross-sectional area. However, the training protocol did result in a significant decrease in MHC IIb with a concomitant increase in MHC IIa for the training men. These data appear to support previous investigations that have suggested exercise-induced adaptations within the fast fiber population (IIb-->IIa) after various types of training (endurance and strength).


Sign in / Sign up

Export Citation Format

Share Document