The T-cell receptor Vβgene repertoire and clonal expansion from peripheral blood T cells in benzene-exposed workers in China

Hematology ◽  
2009 ◽  
Vol 14 (2) ◽  
pp. 106-110 ◽  
Author(s):  
Bo Li ◽  
Yangqiu Li ◽  
Shaohua Chen ◽  
Lijian Yang ◽  
Wei Yu ◽  
...  
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4648-4648
Author(s):  
Yangqiu Li ◽  
Suxia Geng ◽  
Lijian Yang ◽  
Shaohua Chen ◽  
Qingsong Yin

Abstract During early T lymphopoiesis, rearrangement of the V, D and J segments of the TCR genes result in deletion of the intervening chromosomal DNA and formation of circular excision circles, the so-called signal joint T-cell receptor rearrangement excision circles (sjTRECs, TRECs). TRECs are assumed to have a high stability, and can not multiply and consequently are diluted during T cell proliferation. It has been used to evaluate thymic function in T-cell immune reconstruction after treatment in HTLV-I-infected or stem cell transplantation. Defects of cellular immunity, however, may also play a role in hematologic malignancies. On the other hand, examination of T cell receptor (TCR) gene repertoire is important to analysis the immune status of the patients with malignant neoplasms, because clonal expansion of T cells permit the identification of specific antigen response of T cells. Little is known about the feature of T-cell immune state in CML. In order to evaluate the thymic recent output function and the expansion feature of TCR V beta subfamily T cells in patients with chronic myelogenous leukemia (CML in chronic phase), TRECs level and TCR V beta repertoire usage and clonality were analyzed. Quantitative detection of TRECs in DNA of peripheral blood mononuclear cells from 20 cases with CML, purified CD4+ or CD8+ cells from 3 cases with CML were preformed by real-time PCR (TaqMan) analysis. And the TRECs-number was related to the number of T-cells by determination of the number of CD3-positive cells. The expression and cloanlity analysis of TCR V beta repertoire were detected by RT-PCR and genescan technique in PBMC from the 14 out of 20 patients. 9 normal individuals served as controls. A dramatic reduction of TRECs values in patients with CML was showed. The mean value of TRECs was 0.06±0.16 copies /1000 T cells in CML patients and 6.84±4.71 copies /1000 T cells in normal individuals, respectively (p<0.01). In 16 out of 20 CML cases no TRECs copies could be detected in peripheral blood, and lower value of TRECs could be identified in sorted CD4+ or CD8+ cells. The expression of 1–12 V beta subfamilies was found in samples from 14 patients. Clonal expanded T cells from 13 cases could be identified in some V beta subfamilies, which were preferentially used in V beta 3, V beta 10, V beta 19, V beta 21 and V beta 22 subfamilies. In conclusion, this is, to our knowledge, the first description of TRECs level in CML patients. These results showed a prominent reduction of TREC levels in CML. The predominant usage and clonal expansion of TCR Vβ subfamily T cells could be identified in CML patients, indicating the host could have the ability for specific immune response to leukemia associated antigen, in despite of T cell immunodeficiency was showed in patients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3266-3266
Author(s):  
Pablo Laje ◽  
William H. Peranteau ◽  
Masayuki Endo ◽  
Philip W. Zoltick ◽  
Alan W. Flake

Abstract The developing fetal immune system provides a unique opportunity to manipulate normal immunologic development for therapeutic prenatal and anticipated postnatal interventions. In previous studies we have shown that allogeneic in utero hematopoietic cell transplantation (IUHCT) results in donor specific tolerance that can subsequently facilitate non-myeloablative postnatal cellular or organ transplants. It follows that in utero injection of transduced hematopoietic stem cells (HSC) could potentially induce tolerance to a transgene encoded protein. We hypothesized that expression of a transduced antigenic protein by HSC and their progeny would alter thymic T cell development resulting in deletion of antigen specific T-cells. To test this hypothesis, we used the mammary tumor virus (MTV) superantigen system to evaluate the effect of IUHCT of transduced HSC on T cell development. In this system, expression of different MTV oncogenes by different I-E+ strains of mice results in deletion of T cells expressing the relevant Vβ T cell receptor. Specifically, mice which are Mtv7+ delete T cells expressing the Vβ6 T-cell receptor. In this study, CD150+CD48− enriched Balb/c (I-E+ Mtv7−) HSC were transduced with an HIV-based lentivirus expressing MTV7 under an MND promoter. 1.5E+05 transduced cells were injected intravascularly via the vitelline vein into E14 Balb/c fetuses. Non-injected age matched naive Balb/c mice served as the control group. The peripheral blood (PB) and thymuses of injected fetuses and control mice were harvested at day of life (DOL) 10, 20 and 60 and analyzed by flow cytometry for T lymphocyte Vβ6 expression. Additionally, the T cell composition of the thymus was assessed at DOL10 for CD4 and CD8 single positive (SP) and CD4/CD8 double positive (DP) cells. Thymic flow cytometric analysis at DOL10 revealed that greater than 98% of the T cells were CD4CD8 DP, a stage that has not yet undergone negative selection. No significant difference was noted in the percentage of thymic Vβ6+ DP T-cells at this time point or at DOL20 and DOL60. In contrast, there was a significant decrease in the percentage of Vβ6+ peripheral blood SP cells in those mice injected with MTV7 transduced HSC relative to control mice at DOL10, DOL20 and DOL60 (p<0.05) (Fig 1). The current study supports the ability of enriched transduced HSC to induce deletion of transgene specific T cells after IUHCT. In the future, this strategy may be useful to promote tolerance for pre or postnatal cellular or gene therapy. Figure Figure


Blood ◽  
2002 ◽  
Vol 100 (5) ◽  
pp. 1915-1918 ◽  
Author(s):  
Matthias Eyrich ◽  
Tanja Croner ◽  
Christine Leiler ◽  
Peter Lang ◽  
Peter Bader ◽  
...  

Normalization of restricted T-cell–receptor (TCR) repertoire is critical following T-cell–depleted (TCD) stem cell transplantation. We present a prospective study analyzing respective contributions of naive and memory T-cell subsets within the CD4+ and CD8+ compartments to the evolution of overall TCR-repertoire complexity following transplantation of CD34-selected peripheral blood progenitor cells from unrelated donors. During the first year after transplantation, sorted CD4/45RA, CD4/45R0, CD8/45RA, and CD8/45R0 subsets were analyzed at 3-month intervals for TCR-repertoire complexity by CDR3 size spectratyping. Skew in TCR-repertoire was observed only in early memory-type T cells. CD4+ and CD8+ subsets differed in clonal distribution of CDR3 sizes, with rapid Gaussian normalization of bands in CD4/45R0+ T cells. Naive T cells displayed normal repertoire complexity and contributed significantly to skew correction. Our data provide direct evidence for an important role of de novo maturation of naive T cells in normalization of an initially restricted TCR-repertoire following transplantation of CD34-selected, TCD-depleted peripheral blood progenitors from unrelated donors.


1994 ◽  
Vol 139 (1) ◽  
pp. 67 ◽  
Author(s):  
Yoichiro Kusunoki ◽  
Seishi Kyoizumi ◽  
Yuko Hirai ◽  
Shoichiro Fujita ◽  
Mitoshi Akiyama

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 825-825
Author(s):  
Mohamed Shanavas ◽  
Mark Hertzberg ◽  
Rodney J Hicks ◽  
John F Seymour ◽  
Joshua W.D. Tobin ◽  
...  

Abstract T-cell infiltration of the tumor microenvironment (TME) in DLBCL is a key determinant of response to chemo-immunotherapy (Keane, Lancet Haem 2015). We have previously shown that greater diversity of the T-cell receptor (TCR) repertoire within the TME is correlated with improved survival following R-CHOP in DLBCL (Keane, CCR 2017). There are limited data on the impact of the intratumoral TCR repertoire on interim-PET (iPET), the relationship between intratumoral and circulating TCRs, and on dynamic changes of the TCR during therapy. In this study, we interrogated the TCR repertoire in a subset of DLBCL patients treated on the prospective Australasian Leukaemia Lymphoma Group NHL21 study (Hertzberg, Haematologica 2017), in which all patients had 4x RCHOP prior to iPET risk stratification. The CDR3 region of TCRβ chain underwent high-throughput unbiased TCRβ sequencing (Adaptive Biotechnologies). Metrics included: productive templates (total functional T-cells), productive rearrangements (functional T-cells with distinct specificity), productive clonality (repertoire unevenness due to clonal expansions), and maximal frequency clones (% most dominant single clone). Matched intratumoral diagnostic samples, blood at pre-therapy and post-cycle 4 (at the time of iPET) were tested. 42 patients (enriched for iPET+ cases) had sufficient material for testing. Median age was 55 (range 22-69) years and 72% were males. IPI was low/intermediate/high in 13/63/25% respectively. Cell of origin (COO) by Lymph 2CX method (nanoString) was ABC in 30%, and GCB in 44%. 40% were iPET+. In tissue, there was a median of 4652 productive templates, translating into 2998 productive rearrangements identified. Notably, the clonal repertoire of intratumoral TCRs in iPET+ patients was larger than iPET-ve patients (productive clonality 8.1 vs 5.1 x10-2, p=0.04), whereas the numbers of functional T-cells did not vary between groups. Comparing the tumor with the blood samples showed a high, but variable, degree of overlap between peripheral blood and the TME - TCR repertoire. Median number of top 100 tumor tissue clones shared in peripheral blood was 53.5 (range, 1-97) in pre-therapy and 39.5 (range, 0-93) in post-therapy blood, indicating that the both the circulation and the tumor likely contribute to immune-surveillance. In pre-therapy blood, the median productive templates and productive rearrangements were 44,950 (range, 6,003-273,765) and 29,090 (range, 5,190-152,706), and the median clonality was 8.5 (1.46-45.3) x 10-2. There were no differences between iPET+ and iPET-ve patients in these parameters. However, there was a marked change in T-cell composition between time points. Interestingly, in iPET-ve patients clonality measures were increased, with productive clonality 9.4 vs 14.4 x10-2, p=0.03; and % maximum productive frequency 3.39 vs 5.89, p=0.04. These findings demonstrate that the intratumoral TCR repertoire, and sequential blood sampling provide important information on outcome in DLBCL treated with RCHOP. A highly clonal T-cell repertoire in the TME was associated with iPET positivity after 4 cycles of R-CHOP. In line with findings in solid cancers treated with checkpoint blockade, development of clonal responses in peripheral blood was associated with iPET negativity. These findings indicate that clones expanded during therapy may be important in tumor clearance but that highly clonal T-cell responses in the tumor at diagnosis may hinder expansion of other T-cell responses to neoantigens. The circulating TCR composition is representative of the TME. These findings will assist the rationale design and therapeutic monitoring of novel immuno-therapeutic strategies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3157-3163
Author(s):  
I Bank ◽  
M Book ◽  
L Cohen ◽  
A Kneller ◽  
E Rosental ◽  
...  

CD8+ T-lymphocyte populations may be expanded in the peripheral blood of patients with chronic idiopathic neutropenia and may be involved in suppression of granulopoiesis. In this report, we have analyzed the T-cell receptor (TCR) used by the T lymphocytes of a patient with chronic severe neutropenia. Using specific oligonucleotides in the polymerase chain reaction (PCR) to amplify cDNA specific for the different families of the V alpha, V beta, and V delta TCR genes, and monoclonal antibodies (MoAbs) to examine T-lymphocyte subsets and their TCR, a persistent expansion of CD3+CD8+ T lymphocytes and a reduced repertoire of TCR V alpha and V beta genes were found in the patient's peripheral blood mononuclear cell (PBMC) preparations. A predominant portion of the T lymphocytes expressed a unique TCR structure. Thus, we found that, despite the fact that 98% of the T cells expressed alpha beta TCR on the surface membrane and less than 2% expressed tau delta TCR, nonetheless, 40% to 60% of the T cells stained positively with anti V delta 1 MoAb. Using the PCR analysis, the V delta 1 gene segment was found to be rearranged to C alpha, rather than to C delta genes. The expanded C alpha V delta 1+ cells, which are found only rarely in normal PB, expressed CD8 and were cytotoxic, and the C alpha V delta 1 receptor was functional in cytotoxicity. This constitutes the first description of an expansion of cytotoxic CD8+ lymphocytes expressing a functional “hybrid” C alpha V delta 1 gene in vivo, and suggests a pathogenic role for CD8+ C alpha V delta 1+ cells in some patients with idiopathic neutropenia.


Sign in / Sign up

Export Citation Format

Share Document