Determination of weld pool shape and temperature distribution by solving three-dimensional phase change heat conduction problem

2000 ◽  
Vol 5 (5) ◽  
pp. 317-323 ◽  
Author(s):  
W. Guo ◽  
A. Kar
2014 ◽  
Vol 35 (3) ◽  
pp. 81-103 ◽  
Author(s):  
Piotr Furmański ◽  
Mirosław Seredyński ◽  
Piotr Łapka ◽  
Jerzy Banaszek

Abstract Heat flow in heterogeneous media with complex microstructure follows tortuous path and therefore determination of temperature distribution in them is a challenging task. Two-scales, micro-macro model of heat conduction with phase change in such media was considered in the paper. A relation between temperature distribution on the microscopic level, i.e., on the level of details of microstructure, and the temperature distribution on the macroscopic level, i.e., on the level where the properties were homogenized and treated as effective, was derived. The expansion applied to this relation allowed to obtain its more simplified, approximate form corresponding to separation of micro- and macro-scales. Then the validity of this model was checked by performing calculations for 2D microstructure of a composite made of two constituents. The range of application of the proposed micro-macro model was considered in transient states of heat conduction both for the case when the phase change in the material is present and when it is absent. Variation of the effective thermal conductivity with time was considered and a criterion was found for which application of the considered model is justified.


2001 ◽  
Vol 6 (5) ◽  
pp. 305-314 ◽  
Author(s):  
J.M. Vitek ◽  
S.A. David ◽  
M.W. Richey ◽  
J. Biffin ◽  
N. Blundell ◽  
...  

2001 ◽  
Author(s):  
Brian H. Dennis ◽  
George S. Dulikravich

Abstract A finite element method (FEM) formulation is presented for the prediction of unknown steady boundary conditions in heat conduction on multiply connected three-dimensional solid objects. The present FEM formulation is capable of determining temperatures and heat fluxes on the boundaries where such quantities are unknown or inaccessible, provided such quantities are sufficiently over-specified on other boundaries. Details of the discretization, linear system solution techniques, regularization, and sample results for 3-D problems are presented.


Sign in / Sign up

Export Citation Format

Share Document