Kinetic model for direct smelting reduction process of Huimin iron ore

2013 ◽  
Vol 122 (2) ◽  
pp. 105-112 ◽  
Author(s):  
G-F Fan ◽  
S Qing ◽  
H Wang ◽  
W-C Hong
Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Víctor Hugo Gutiérrez Pérez ◽  
Juan Daniel Osorio Hernández ◽  
Ricardo Gerardo Sánchez Alvarado ◽  
Alejandro Cruz Ramírez ◽  
Seydy Lizbeth Olvera Vázquez ◽  
...  

Lead was recovered through a direct smelting reduction route from a lead concentrate by using mixtures of Na2CO3 and SiC to 1000 °C. The lead concentrate was obtained from the mining State of Zacatecas, México by traditional mineral processing and froth flotation. The experimental trials showed that 86 wt.% of lead with a purity up to 97% can be recovered from the lead concentrate by a single step reduction process when 40 wt.% Na2CO3 and 0.4 g SiC were used in the initial charge. The process was modeled in the thermodynamic software FactSage 7.3 to evaluate the effect of adding different amounts of Na2CO3 on the lead recovery rates while holding constant the SiC amount and temperature. The stability phase diagram obtained showed that an addition of 34 wt.% Na2CO3 was enough to reach the highest lead recovery. It was observed that the interaction of Na2CO3 and SiC at a high temperature promotes the formation of C and Na2O, and SiO2, respectively, where the Na2O partially bonds with silica and sulfur forming Na2S and sodium silicates which may decrease the SO2 emissions and increase the weather degradation of the slag. The PbS was mainly reduced by the produced C and CO formed by the interaction between Na2CO3 and SiC at 1000 °C. The predicted results reasonably match with those obtained experimentally in the lead recovery rates and compounds formation.


1993 ◽  
Vol 79 (10) ◽  
pp. 1151-1156 ◽  
Author(s):  
Kentarou NOZAWA ◽  
Koichiro SHIBATA ◽  
Masakata SHIMIZU ◽  
Heinrich Wilhelm GUDENAU

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 935 ◽  
Author(s):  
Masab Naseri Seftejani ◽  
Johannes Schenk ◽  
Daniel Spreitzer ◽  
Michael Andreas Zarl

Replacing carbon by hydrogen is a huge step towards reducing CO2 emissions in the iron- and steel-making industry. The reduction of iron oxides using hydrogen plasma smelting reduction as an alternative to conventional steel-making routes has been studied at Montanuniversitaet Leoben, Austria. The aim of this work was to study the slag formation during the reduction process and the reduction behaviour of iron oxides. Furthermore the reduction behaviour of iron ore during continuous feeding was assessed. Mixtures of iron ore and calcined lime with a basicity of 0, 0.8, 1.6, 2.3, and 2.9 were melted and reduced by hydrogen. The off-gas composition was measured during the operations to calculate the process parameters. The reduction parameters, namely the degree of reduction, degree of hydrogen utilisation, produced iron, and slag, are presented. The results of the batch-charged experiments showed that at the beginning of the reduction process, the degree of hydrogen utilisation was high, and then, it decreased over the operation time. In contrast, during the continuous-feeding experiment, the degree of hydrogen utilisation could be kept approximately constant. The highest degrees of reduction and hydrogen utilisation were obtained upon the application of a slag with a basicity of 2.3. The experiment showed that upon the continuous feeding of iron ore, the best conditions for the reduction process using hydrogen could be applied.


2003 ◽  
Vol 30 (4) ◽  
pp. 328-336 ◽  
Author(s):  
Y. P. Hwang ◽  
C. M. Fan ◽  
Y. L. Chen ◽  
W. S. Hwang ◽  
I. G. Chen ◽  
...  

2006 ◽  
Vol 46 (8) ◽  
pp. 1158-1164 ◽  
Author(s):  
Hsin-Chien Chuang ◽  
Jer-Haur Kuo ◽  
Chien-Chia Huang ◽  
Shih-Hsien Liu ◽  
Weng-Sing Hwang

2013 ◽  
Vol 401-403 ◽  
pp. 704-707
Author(s):  
Yan Liu ◽  
Mao Fa Jiang ◽  
De Yong Wang

For describing and resolving the process of chromium ore smelting reduction preferably, the research status on the thermodynamics and kinetics of chromium ore smelting reduction process was summarized, based on the introduction of the process for smelting stainless steel with hot metal in a converter. The existing problems for smelting stainless steel by chromium ore smelting reduction in a converter were also discussed and some suggestions were made for the future work. A lot of investigations about the thermodynamics and the reduction mechanisms of chromium ore have been done. However, the consistent view about the thermodynamic feasibility and the mechanism of smelting reduction has not been achieved, so the application of research results is limited. Little work about the reaction kinetic model for the production of stainless steel by chromium ore smelting reduction and direct alloying has been done. So the synthetic kinetic model including a dissolution model and a reduction model of chromium ore should be built to predict and control accurately the process.


Author(s):  
Masab Naseri Seftejani ◽  
Johannes Schenk ◽  
Daniel Spreitzer ◽  
Michael Andreas Zarl

Replacing carbon by hydrogen is a huge step towards reducing CO2 emissions in the iron- and steel-making industry. The reduction of iron oxides using hydrogen plasma smelting reduction as an alternative to conventional steel-making routes has been studied at Montanuniversitaet Leoben, Austria. The aim of this work was to study the slag formation during the reduction process and the reduction behaviour of iron oxides. Furthermore, the reduction behaviour of iron ore during continuous feeding was assessed. Mixtures of iron ore and calcined lime with a basicity of 0, 0.8, 1.6, 2.3, and 2.9 were melted and reduced by hydrogen. The off-gas composition was measured during the operations to calculate the process parameters. The reduction parameters, namely the degree of reduction, degree of hydrogen utilisation, produced iron, and slag, are presented. The results of the batch-charged experiments showed that at the beginning of the reduction process, the degree of hydrogen utilisation was high, and then, it decreased over the operation time. In contrast, during the continuous-feeding experiment, the degree of hydrogen utilisation could be kept approximately constant. The highest degrees of reduction and hydrogen utilisation were obtained upon the application of a slag with a basicity of 2.3. The experiment showed that upon the continuous feeding of iron ore, the best conditions for the reduction process using hydrogen could be applied.


Sign in / Sign up

Export Citation Format

Share Document