dissolution model
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 30)

H-INDEX

19
(FIVE YEARS 3)

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 121992
Author(s):  
Wei Meng ◽  
Fenggui Sui ◽  
Xuefeng Hao ◽  
Shoupeng Zhang ◽  
Yue Jiang ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1545
Author(s):  
Connor O’Farrell ◽  
Caroline L. Hoad ◽  
Konstantinos Stamatopoulos ◽  
Luca Marciani ◽  
Sarah Sulaiman ◽  
...  

Knowledge of luminal flow inside the human colon remains elusive, despite its importance for the design of new colon-targeted drug delivery systems and physiologically relevant in silico models of dissolution mechanics within the colon. This study uses magnetic resonance imaging (MRI) techniques to visualise, measure and differentiate between different motility patterns within an anatomically representative in vitro dissolution model of the human ascending colon: the dynamic colon model (DCM). The segmented architecture and peristalsis-like contractile activity of the DCM generated flow profiles that were distinct from compendial dissolution apparatuses. MRI enabled different motility patterns to be classified by the degree of mixing-related motion using a new tagging method. Different media viscosities could also be differentiated, which is important for an understanding of colonic pathophysiology, the conditions that a colon-targeted dosage form may be subjected to and the effectiveness of treatments. The tagged MRI data showed that the DCM effectively mimicked wall motion, luminal flow patterns and the velocities of the contents of the human ascending colon. Accurate reproduction of in vivo hydrodynamics is an essential capability for a biorelevant mechanical model of the colon to make it suitable for in vitro data generation for in vitro in vivo evaluation (IVIVE) or in vitro in vivo correlation (IVIVC). This work illustrates how the DCM provides new insight into how motion of the colonic walls may control luminal hydrodynamics, driving erosion of a dosage form and subsequent drug release, compared to traditional pharmacopeial methods.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Philippe Ackerer ◽  
Arnaud Bouissonnié ◽  
Raphael di Chiara Roupert ◽  
Damien Daval

AbstractBond-breaking activation energy EB is nowadays a key parameter for understanding and modeling crystal dissolution processes. However, a methodology to estimate EB based on classical dissolution experiments still does not exist. We developed a new method based on the calibration of a Kossel type dissolution model on measured dissolution rates obtained by mass (or volume) variations over time. The dissolution model does not depend on the geometry of the crystal surface but only on the density of the different types of sites (kink, step, terrace, bulk). The calibration method was applied to different experimental setups (flow through and batch) with different ways of estimating the dissolution rates (solute concentration in the fluid, surface topography) for calcite crystals. Despite the variety of experimental conditions, the estimated bond-breaking activation energies were very close to each other (between 31 and 35 kJ/mol) and in good agreement with ab initio calculations.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1234
Author(s):  
Yong Liu ◽  
Dongyu Fang ◽  
Bin Zhu ◽  
Yilin Wang ◽  
Shiqi Li ◽  
...  

During the solution heat treatment (SHT) process of aluminum alloys, precipitates dissolve into the matrix. To predict the dissolution time, modeling of isothermal dissolution of precipitates in 6061 aluminum alloy during SHT was conducted. A precipitate dissolution model was established, and the flowchart of the modeling was designed as well. Then the explicit finite-difference method was employed to solve the dissolution model, and the mobile nodes method was used to deal with the moving interface. The simulation was based on real precipitates in 6061, and SHT experiments were conducted to validate the numerical model. The simulation results showed that the isothermal dissolution time of precipitates in 6061-T6 aluminum alloy at 560 °C is 11.6856 s. The dissolution time in the simulation was close to the experimental results, with an error of 16.7%, indicating that the modeling in this study was fairly reasonable and accurate. The error was caused by many factors, and the model should be improved.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 863
Author(s):  
Seth P. Forster ◽  
David B. Lebo

Taste-masking of drugs, particularly to produce formulations for pediatric patients, can be challenging and require complex manufacturing approaches. The objective of this study was to produce taste-masked ibuprofen granules using a novel process, twin-screw melt granulation (TSMG). TSMG is an emerging, high-productivity, continuous process. Granules of ibuprofen embedded in a lipid matrix were produced across a range of process conditions, resulting in a range of output granule particle sizes. The ibuprofen appeared to be miscible with the lipid binder though it recrystallized after processing. The ibuprofen melt granules were tested in simulated saliva using a novel, small-volume dissolution technique with continuous acquisition of the ibuprofen concentration. The ibuprofen release from the granules was slower than the neat API and physical blend, beyond the expected residence time of the granules in the mouth. The ibuprofen release was inversely related to the granule size. A Noyes–Whitney dissolution model was used and the resulting dissolution rate constants correlated well with the granule size.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
V. W. Wimalasiri ◽  
S. P. Dunuweera ◽  
A. N. Dunuweera ◽  
R. M. G. Rajapakse

This paper describes a convenient and straightforward method developed to extract keratin particles (KPs) from human hair. It also involves their characterization by several methods and encapsulation of the anticancer drug Paclitaxel (Taxol) within them, aiming for targeted delivery to cancerous sites and slow release at their vicinity. The KPs obtained were in micrometer in size. They are capable of encapsulating Taxol within them with a high encapsulation efficiency of 56% and a drug loading capacity of 2.360 g of Taxol per g keratin. As revealed by the SEM elemental analysis, KPs do not contain any toxic metal ion, and hence, they pose no toxicity to human cells. The pH-dependent release kinetics of the drug from KPs indicates that the drug is released faster when the pH of the solution is increased in the 5.0 to 7.0 pH range. The release kinetics obtained is impressive, and once targeted to the cancerous sites, using cancer directing agents, such as folic acid; a glutamate urea ligand known as DUPA; aminopeptidase N, also known as CD13; and FAP-α-targeting agents, the slow release of the drug is expected to destroy only the cancerous cells. The Noyes-Whitney dissolution model was used to analyze the release behavior of Taxol from KPs, which shows excellent fitting with experimental data. The pH dependence of drug release from keratin is also explained using the 3-D structures and keratin stability at different pH values.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 627
Author(s):  
Ahmad A. Shahba ◽  
Ahmad Y. Tashish ◽  
Fars K. Alanazi ◽  
Mohsin Kazi

The study aims to design a novel combination of drug-free solid self-nanoemulsifying drug delivery systems (S-SNEDDS) + solid dispersion (SD) to enhance cinnarizine (CN) dissolution at high pH environment caused by hypochlorhydria/achlorhydria. Drug-loaded and drug-free liquid SNEDDS were solidified using Neusilin® US2 at 1:1 and 1:2 ratios. Various CN-SDs were prepared using freeze drying and microwave technologies. The developed SDs were characterized by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD). In-vitro dissolution studies were conducted to evaluate CN formulations at pH 6.8. Drug-free S-SNEDDSs showed acceptable self-emulsification and powder flow properties. DSC and XRD showed that CN was successfully amorphized into SDs. The combination of drug-free S-SNEDDS + pure CN showed negligible drug dissolution due to poor CN migration into the formed nanoemulsion droplets. CN-SDs and drug-loaded S-SNEDDS showed only 4% and 23% dissolution efficiency (DE) while (drug-free S-SNEDDS + FD-SD) combination showed 880% and 160% enhancement of total drug release compared to uncombined SD and drug-loaded S-SNEDDS, respectively. (Drug-free S-SNEDDS + SD) combination offer a potential approach to overcome the negative impact of hypochlorhydria/achlorhydria on drug absorption by enhancing dissolution at elevated pH environments. In addition, the systems minimize the adverse effect of adsorbent on drug release.


Sign in / Sign up

Export Citation Format

Share Document