Characterisation of cold sprayed Al5056/SiCp coating: effect of SiC particle size

2016 ◽  
Vol 32 (9) ◽  
pp. 641-649 ◽  
Author(s):  
T. Yang ◽  
M. Yu ◽  
H. Chen ◽  
W. Y. Li ◽  
H. L. Liao
Keyword(s):  
2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Thella Babu Rao

One of the major advantages of metal matrix composites (MMCs) is that their tailorable properties meet the specific requirements of a particular application. This paper deals with the experimental investigations done on the effects of the reinforcement particulate size and content on the Al7075/SiC composite. The composites were manufactured using stir casting technique. The effect of SiC particle size (25, 50, and 75 μm) and particulate content (5, 10, and 15 wt %) on the microstructural, mechanical properties, and wear rate of the composites was studied and the results were analyzed for varied conditions of reinforcement. Scanning electron microscope (SEM) examinations were used to assess the dispersion of SiC particles reinforced into the matrix alloy and was found with reasonably uniform with minimal particle agglomerations and with good interfacial bonding between the particles and matrix material. X-ray diffraction (XRD) analysis confirmed the presence of Al and SiC with the composite. The results of mechanical tests showed that the increasing SiC particle size and content considerably enhanced the ultimate tensile strength and hardness of the composites while the ductility at this condition was decreased. The highest ultimate tensile strength of 310 MPa and hardness of 126 BHN were observed for the composites containing 15 wt %. SiC at 75 μm. Lesser the wear resistance of the reference alloy while it was enhanced up to 40% with the composites. The wear resistance was increased up to 1200 m of sliding distance for all the composites, whereas for the composite containing 75 μm SiC particles, it was extended up to 1800 m.


2013 ◽  
Vol 60 (5) ◽  
pp. 202-208 ◽  
Author(s):  
Kiyoshi MIZUUCHI ◽  
Kanryu INOUE ◽  
Yasuyuki AGARI ◽  
Masami SUGIOKA ◽  
Motohiro TANAKA ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 967
Author(s):  
Sae Han Park ◽  
Chae Eun Yeo ◽  
Min Ji Lee ◽  
Sung Won Kim

There is a growing interest in a fluidized bed particle receiver that directly irradiates sunlight to particles in the fluidized bed as a solar thermal collector for heating. Thermal performance of directly-irradiated fluidized bed gas heater is strongly affected by the physical properties of the particles. The effect of SiC particle size on heat transfer characteristics in the solar fluidized bed gas heater (50 mm-ID × 100 mm high) has been determined. The outlet gas temperatures showed a maximum value with increasing gas velocity due to the particles motion by bubble behavior in the bed, and the maximum values were found at 3.6 times of Umf for fine SiC and less than 2.0 times of Umf for coarse SiC. Heat absorption from the receiver increased with increasing gas velocity, showing with maximum 18 W for the fine SiC and 23 W for the coarse SiC at 4.5 times of Umf. The thermal efficiency of the receiver increased with increasing gas velocity, but was affected by the content of finer particles. The maximum thermal efficiency of the receiver was 14% for fine SiC and 20% for coarse SiC within the experimental range, but showing higher for the fine SiC at the same gas velocity. A design consideration was proposed to improve the thermal efficiency of the system.


2013 ◽  
Vol 22 (4) ◽  
pp. 096369351302200 ◽  
Author(s):  
Necat Altinkök

In this study, initially Al2O3/SiC powder mix was prepared by reacting of aqueous solution of aluminium sulphate, ammonium sulphate and water containing SiC particles at 1200°C. 10 wt% of this hybrid ceramic powder with different sized SiC particles was added to a liquid Al matrix alloy during mechanical stirring between solidus and liqudus under inert conditions. Then hybrid Metal Matrix Composites (MMCs) was produced. The effect of reinforced particle size on tensile strength, bending strength, hardness resistance and wear resistance properties of hybrid reinforced MMCs were investigated. The mechanical test results revealed that bending, tensile strength and hardness resistance of the composites increased with decrease in ductility, with decrease size of the reinforcing SiC particulates in the aluminium alloy metal matrix. The wear behaviour of the hybrid ceramic reinforced aluminium matrix composites was investigated using pin-on-disc test at room temperature under dry conditions. Wear tests showed that the wear resistance of MMCs increased with increasing reinforced Al2O3/SiC particle size. Comparing the fine particle size MMCs with the coarse particle size MMCs were easily pulled out whole from the matrix. Microstructural examination showed that as well as coarse SiC particle reinforcement, a fine alumina particle reinforcement phase was observed within the aluminium matrix (A332).


Sign in / Sign up

Export Citation Format

Share Document