An Experimental Investigation on Mechanical and Wear Properties of Al7075/SiCp Composites: Effect of SiC Content and Particle Size

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Thella Babu Rao

One of the major advantages of metal matrix composites (MMCs) is that their tailorable properties meet the specific requirements of a particular application. This paper deals with the experimental investigations done on the effects of the reinforcement particulate size and content on the Al7075/SiC composite. The composites were manufactured using stir casting technique. The effect of SiC particle size (25, 50, and 75 μm) and particulate content (5, 10, and 15 wt %) on the microstructural, mechanical properties, and wear rate of the composites was studied and the results were analyzed for varied conditions of reinforcement. Scanning electron microscope (SEM) examinations were used to assess the dispersion of SiC particles reinforced into the matrix alloy and was found with reasonably uniform with minimal particle agglomerations and with good interfacial bonding between the particles and matrix material. X-ray diffraction (XRD) analysis confirmed the presence of Al and SiC with the composite. The results of mechanical tests showed that the increasing SiC particle size and content considerably enhanced the ultimate tensile strength and hardness of the composites while the ductility at this condition was decreased. The highest ultimate tensile strength of 310 MPa and hardness of 126 BHN were observed for the composites containing 15 wt %. SiC at 75 μm. Lesser the wear resistance of the reference alloy while it was enhanced up to 40% with the composites. The wear resistance was increased up to 1200 m of sliding distance for all the composites, whereas for the composite containing 75 μm SiC particles, it was extended up to 1800 m.

2008 ◽  
Vol 375-376 ◽  
pp. 430-434 ◽  
Author(s):  
Yi Yi Tao ◽  
Xiao Lan Ge ◽  
Xiao Jing Xu ◽  
Zuo Jiang

The SiCp/Al composites reinforced by SiC particles with various sizes and contents were prepared by cold compacting and subsequent hot extruding. The mechanical and wear properties of the compositions were investigated and the relevant mechanisms were discussed. It has been shown that the tensile strength and wear resistance increases with increasing SiCp content. SiC particles have a remarkable reinforcing effect on matrix Al. The composite with larger SiCp size (14μm) possesses better wear resistance than that with smaller SiCp size (130nm).


2013 ◽  
Vol 22 (4) ◽  
pp. 096369351302200 ◽  
Author(s):  
Necat Altinkök

In this study, initially Al2O3/SiC powder mix was prepared by reacting of aqueous solution of aluminium sulphate, ammonium sulphate and water containing SiC particles at 1200°C. 10 wt% of this hybrid ceramic powder with different sized SiC particles was added to a liquid Al matrix alloy during mechanical stirring between solidus and liqudus under inert conditions. Then hybrid Metal Matrix Composites (MMCs) was produced. The effect of reinforced particle size on tensile strength, bending strength, hardness resistance and wear resistance properties of hybrid reinforced MMCs were investigated. The mechanical test results revealed that bending, tensile strength and hardness resistance of the composites increased with decrease in ductility, with decrease size of the reinforcing SiC particulates in the aluminium alloy metal matrix. The wear behaviour of the hybrid ceramic reinforced aluminium matrix composites was investigated using pin-on-disc test at room temperature under dry conditions. Wear tests showed that the wear resistance of MMCs increased with increasing reinforced Al2O3/SiC particle size. Comparing the fine particle size MMCs with the coarse particle size MMCs were easily pulled out whole from the matrix. Microstructural examination showed that as well as coarse SiC particle reinforcement, a fine alumina particle reinforcement phase was observed within the aluminium matrix (A332).


2012 ◽  
Vol 271-272 ◽  
pp. 12-16 ◽  
Author(s):  
Zeng Lei Ni ◽  
Ai Qin Wang ◽  
Jing Pei Xie

This paper studied the combined effects of particle size and distribution on the mechanical properties of the SiC particle reinforced Al-30Si alloy composites. The microstructure of experimental material was analyzed by SEM, the tensile strength and physical properties were examined. The results show that, with the increase of the SiC particle size in the composites, the clustering degree of the SiC particles decreases in the matrix, the SiC particles distribute more ununiformly. The tensile strength is influenced by the SiC particle size, the tensile strength of the composite reinforced by 13μm sized SiC particles is the highest.


2014 ◽  
Vol 556-562 ◽  
pp. 302-305 ◽  
Author(s):  
Yue Bo Zhang ◽  
Bernie Ya Ping Zong ◽  
Jian Feng Jin ◽  
Xin Jian Cao

SiC particles were coated with copper and nickel respectively through electroless plating process to investigate the plating effect on mechanical properties of SiCp/Fe composites. It shows that tensile strength and final elongation of the composite improve significantly after the plating treatment of SiC particles. Compared with the composite reinforced by uncoated one, the maximum increase of tensile strength is 20.1% reinforced by nickel-coated SiC particles with the particle size of 21μm and volume fraction of 20%. The maximum tensile strength among the SiCp/Fe composites reaches 928.3MPa where the composite is reinforced by nickel-coated SiC particles with the particle size of 13μm and volume fraction of 10%. In contrast with that reinforced by uncoated SiC particles, the highest increment of final elongation is 19.6% reinforced by copper-coated SiC particle with the particle size of 13μm and volume fraction of 20%. Electroless plating on SiC particle surface may effectively prevent the direct contact in the interfaces between the SiC particles which can reduce the risk of micro-crack formation, so as to improve the properties of composite.


2019 ◽  
Vol 22 (2) ◽  
pp. 143-150
Author(s):  
Hussain J. M. Al-Alkawi ◽  
Abduljabbar Owaid Hanfesh ◽  
Saja Mohammed Noori Mohammed Rauof

This research is devoted to study the influence of different weight percent concerning to the additions of Ti and Cu on mechanical and tribological properties of AA6061. The composite materials consist of different weight percentage of Ti (0.2, 0.4, and 0.6) wt% and constant weight percentage of Cu (0.2) wt% which were fabricated by liquid metallurgy route technique. Microstructural characterization and phases have been examined by using SEM (scanning electron microscopic).SEM examination showed uniform distribution of nano Ti and Cu in AA6061. The consequences of mechanical tests demonstrated clear enhancement in mechanical properties, such as ultimate tensile strength, yield strength, young modulus, ductility% and hardness at additive percentage of 0.4% Ti+0.2%Cu nano particles incorporated into molten AA6061. Percentage of enhancement ultimate tensile strength is about 73.3%, yield strength about 82.7%, young modulus is about 21.2%, the  Vickers hardness about 42.6% and the decreasing in ductility was about 25.2% compared with the metal matrix (AA6061). The wear rate test was performed by using pin on disc rig for both hybrid nano composite and base metal (AA6061) under various loads (10,15and 20) N with sliding speed (1.282) m/sec at a (10) min’s time. The results showed a decrease in wear rate at 0.4%Ti+0.2%Cu compared with the base metal (AA6061). Improvement percentage of wear rate is about 105% at 20 N load.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1027-1032

Nano technology has fascinated the attention of numerous material scientists and design engineers. The nano scaled particulates incorporation exhibit many attractive and special properties. The inclusion of nano particulates into the copper matrix might augments the hardness, ultimate tensile strength and yield strength significantly increases, maintaining the ductility. In this paper, the nano Al2O3 reinforced copper - 5%tin- metal matrix composites were manufactured by stir casting technique and reinforcement is varied from 0wt. % to 9wt. % in ventures of 3wt. %. The nano composites are characterized in terms of their mechanical and wear properties. Results revealed that, the distribution of nano Al2O3 particulates is fairly uniform in copper - 5%tin metal matrix. As the level of reinforcement increases, hardness, yield strength, ultimate tensile strength, and wear resistance of the copper - 5%tin – nano Al2O3 metal matrix composites increases. The developed nano metal matrix composites may be an alternative material for bearing applications


2012 ◽  
Vol 19 (3) ◽  
pp. 247-253 ◽  
Author(s):  
Krishnan Ravi Kumar ◽  
Kothavady Mylsamy Mohanasundaram ◽  
Ganesan Arumaikkannu ◽  
Ramanathan Subramanian

AbstractIn the present study, aluminium alloy (A380) composites containing 3, 6, 9 and 12 weight percentage of fly ash particles were fabricated by liquid metallurgy technique. Three different size ranges of fly ash particles (50–75 μm, 75–103 μm and 103–150 μm) were used. The composites were evaluated for hardness, tensile strength, density, dry sliding wear and frictional behaviour. Pin-on disc apparatus was used to conduct wear tests at loads of 20, 30 and 40 N at a sliding speed of 3 m/s for a constant period of 10 min. Results showed that hardness, ultimate tensile strength, wear resistance and coefficient of friction were superior in composites reinforced with coarse fly ash particles (103–150 μm) compared to composites with fine particles. The hardness, ultimate tensile strength and wear resistance increased, whereas the coefficient of friction and density decreased with the increase in weight percentage of fly ash. Wear resistance and coefficient of friction decreased with increase in applied load. Scanning electron microscope investigations of worn-out samples were carried out to study the progress of wear.


2019 ◽  
Vol 823 ◽  
pp. 117-122
Author(s):  
Norifumi Miyanaga ◽  
Jun Tomioka

Electroless nickels have been used in practical applications as versatile materials for anti-wear. The wear resistance is well-improved as a composite coating by incorporating particles. Composite platting offers various mechanical and electoronic functions, depending on the combination of a material matrix and particles deposited. Among them Ni-P plating reinforced with SiC particles have been growing in importance owing to its high hardness and better anti-wear properties. In this study, a Ni-P-SiC/Ni-P-SiC system was evaluated using a ball-on-plate type reciprocating tester, and the results were compared with that of SiC/SiC system at room temperature. As the results, the Ni-P-SiC/Ni-P-SiC system with the surfaces where SiC particles were appeared in clumps had the low frictional coefficient around 0.1 even in water.


2013 ◽  
Vol 457-458 ◽  
pp. 131-134 ◽  
Author(s):  
Tao Fan ◽  
Cong Li Xiao ◽  
Yan Rong Sun ◽  
Hong Bo Li

The aim of this study is to investigate the effect of SiC particle pretreatment, aluminum matrix particle size and sintering temperature on relative density, hardness, microstructure and wear resistance to SiC particle einforced aluminum matrix composites. To this end, the amount of 16.7 wt.% SiC with average particle sizes 20μm was used along with pure aluminum of average particle size of 75 μm and 25μm. Powder metallurgy is a method used in the fabrication of this composite in which the powders were mixed using a planetary ball mill. By analyzing SEM micrograph and the Property test, it is concluded that SiC particle pretreatment has significant effect on the morphology of pecimens. pretreatment increase the interface adhesion, improve the wettability. SiC is uniformly distributed in the matrix, with good relation to the substrate, the maximum hardness is 51.1HB, the minimum wear rate is 0.1684%, while the density is 97.3%.For the same SiC content and particle size, the smaller the particle size of aluminum matrix is, the higher wear resistance of composite materials is on condition that others are same, the higher sintering temperature and the higher the wearability of composites, the wear resistance of the composite material is significantly improved after SiC pre-processing.The relative density increases with increasing aluminum matrix particle sizes under the same pressure and the holding time. The actual density of all samples reached the theoretical density over 96%, to a maximum of 98.9%.


Sign in / Sign up

Export Citation Format

Share Document